Advertisement

Machine Learning Classification and Segmentation of Forest Fires in Wide Area Motion Imagery

Conference paper
  • 614 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1070)

Abstract

Numerous models and simulations exist for characterizing and predicting wildland fire behavior. The U.S. Forest Service (USFS) and other organizations have devoted decades of research to identifying the parameters that affect fire movement, rate of spread, and direction of spread across geographic terrain. While this research is invaluable to the firefighting community, due to computational constraints, these models do not run in real time or against imagery at time-of-collect, and therefore do little to assist the firefighter and first responders on the ground during a wildland fire event. We present the first part of a multi-step automated computational methodology to characterize fire behavior and rate of spread in real time across any geographic terrain. This first step is the classification and segmentation of the wildland fire in Wide Area Motion Imagery (WAMI) using Machine Learning (ML) methods. The continuation of this research, detailed herein, will involve training a more robust, purpose-built Recurrent Neural Network architecture incorporating many of the parameters the USFS has been studying for decades. The goal of this research is to deploy models using ‘lite’ ML frameworks on edge devices, mounted on collection platforms for real-time decision support for firefighting operations as imagery and other data are being collected during a wildland fire event.

Keywords

Machine learning Forest fires Wide Area Motion Imagery Image classification Image segmentation 

References

  1. 1.
    Hoover, K.: Wildfire Statistics. Congressional Research Service. Crs.gov 7-7500 (2018)Google Scholar
  2. 2.
    Finney, M.A., Grenfell, I.C., McHugh, C.W., Seli, R.C., Trethewey, D., Stratton, R.D., Brittain, S.: A method for ensemble wildland fire simulation. Environ. Model. Assess. 16(2), 153–167 (2011)CrossRefGoogle Scholar
  3. 3.
    Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of Prometheus: the Canadian wildland fire growth simulation model. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Information Report NOR-X-417, Edmonton, AB (2010)Google Scholar
  4. 4.
    Hostikka, S.I.M.O., Mangs, J.O.H.A.N., Mikkola, E.S.K.O.: Comparison of two and three dimensional simulations of fires at wildland urban interface. Fire Saf. Sci. 9, 1353–1364 (2008)CrossRefGoogle Scholar
  5. 5.
    Alemany, S., Beltran, J., Perez, A., Ganzfried, S.: Predicting hurricane trajectories using a recurrent neural network. arXiv preprint arXiv:1802.02548 (2018)
  6. 6.
    Moradi Kordmahalleh, M., Gorji Sefidmazgi, M., Homaifar, A.: A sparse recurrent neural network for trajectory prediction of Atlantic hurricanes. In: Proceedings of the 2016 Genetic and Evolutionary Computation Conference, pp. 957–964. ACM, July 2016Google Scholar
  7. 7.
    Jiang, G.Q., Xu, J., Wei, J.: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models. Geophys. Res. Lett. 45(8), 3706–3716 (2018)CrossRefGoogle Scholar
  8. 8.
    Cui, Y., Olsen, K.B., Jordan, T.H., Lee, K., Zhou, J., Small, P., Levesque, J.: Scalable earthquake simulation on petascale supercomputers. In: SC 2010: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–20. IEEE, November 2010Google Scholar
  9. 9.
    Hantson, S., Arneth, A., Harrison, S.P., Kelley, D.I., Prentice, I.C., Rabin, S.S., Bachelet, D.: The status and challenge of global fire modelling. Biogeosciences 13(11), 3359–3375 (2016)CrossRefGoogle Scholar
  10. 10.
    Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N.: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195 (2019)CrossRefGoogle Scholar
  11. 11.
    Henderson, S.G., Biller, B., Hsieh, M.H., Shortle, J., Tew, J.D., Barton, R.R.: Agent-based modeling and simulation of wildland fire suppressionGoogle Scholar
  12. 12.
    Niazi, M.A., Siddique, Q., Hussain, A., Kolberg, M.: Verification and validation of an agent-based forest fire simulation model. In: Proceedings of the 2010 Spring Simulation Multiconference, p. 1. Society for Computer Simulation International, April 2010Google Scholar
  13. 13.
    Andrews, P.L.: The Rothermel surface fire spread model and associated developments: A comprehensive explanation. Gen. Technical Report. RMRS-GTR-371. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 121 p. 371 (2018)Google Scholar
  14. 14.
    Lenihan, J.M., Daly, C., Bachelet, D., Neilson, R.P.: Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Sci. 72(4), 91–101 (1998)Google Scholar
  15. 15.
    Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Thonicke, K.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9(2), 161–185 (2003)CrossRefGoogle Scholar
  16. 16.
    Arora, V.K., Boer, G.J.: Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research Biogeosciences 110(2) (2005)Google Scholar
  17. 17.
    Pfeiffer, M., Spessa, A., Kaplan, J.O.: A model for global biomass burning in preindustrial time: LPJ-LMfire (v1. 0). Geosci. Model Dev. 6(3), 643–685 (2013)CrossRefGoogle Scholar
  18. 18.
    Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)CrossRefGoogle Scholar
  19. 19.
    Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)CrossRefGoogle Scholar
  20. 20.
    Pham, D.T., Dimov, S.S., Nguyen, C.D.: Selection of K in K-means clustering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 219(1), 103–119 (2005)CrossRefGoogle Scholar
  21. 21.
    Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)Google Scholar
  22. 22.
    Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Netw. 7(6), 1329–1338 (1996)CrossRefGoogle Scholar
  23. 23.
    Diaconescu, E.: The use of NARX neural networks to predict chaotic time series. Wseas Trans. Comput. Res. 3(3), 182–191 (2008)Google Scholar
  24. 24.
    Mandic, D.P., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, New York (2001)CrossRefGoogle Scholar
  25. 25.
    Xingjian, S.H.I., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)Google Scholar
  26. 26.
    Overholt, K.J., Ezekoye, O.A.: Quantitative testing of fire scenario hypotheses: a Bayesian inference approach. Fire Technol. 51(2), 335–367 (2015)CrossRefGoogle Scholar
  27. 27.
    West, M., Harrison, P.J., Migon, H.S.: Dynamic generalized linear models and Bayesian forecasting. J. Am. Stat. Assoc. 80(389), 73–83 (1985)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Next Tier Concepts, Inc.ViennaUSA

Personalised recommendations