Hoover, K.: Wildfire Statistics. Congressional Research Service. Crs.gov 7-7500 (2018)
Google Scholar
Finney, M.A., Grenfell, I.C., McHugh, C.W., Seli, R.C., Trethewey, D., Stratton, R.D., Brittain, S.: A method for ensemble wildland fire simulation. Environ. Model. Assess. 16(2), 153–167 (2011)
CrossRef
Google Scholar
Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of Prometheus: the Canadian wildland fire growth simulation model. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Information Report NOR-X-417, Edmonton, AB (2010)
Google Scholar
Hostikka, S.I.M.O., Mangs, J.O.H.A.N., Mikkola, E.S.K.O.: Comparison of two and three dimensional simulations of fires at wildland urban interface. Fire Saf. Sci. 9, 1353–1364 (2008)
CrossRef
Google Scholar
Alemany, S., Beltran, J., Perez, A., Ganzfried, S.: Predicting hurricane trajectories using a recurrent neural network. arXiv preprint arXiv:1802.02548 (2018)
Moradi Kordmahalleh, M., Gorji Sefidmazgi, M., Homaifar, A.: A sparse recurrent neural network for trajectory prediction of Atlantic hurricanes. In: Proceedings of the 2016 Genetic and Evolutionary Computation Conference, pp. 957–964. ACM, July 2016
Google Scholar
Jiang, G.Q., Xu, J., Wei, J.: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models. Geophys. Res. Lett. 45(8), 3706–3716 (2018)
CrossRef
Google Scholar
Cui, Y., Olsen, K.B., Jordan, T.H., Lee, K., Zhou, J., Small, P., Levesque, J.: Scalable earthquake simulation on petascale supercomputers. In: SC 2010: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–20. IEEE, November 2010
Google Scholar
Hantson, S., Arneth, A., Harrison, S.P., Kelley, D.I., Prentice, I.C., Rabin, S.S., Bachelet, D.: The status and challenge of global fire modelling. Biogeosciences 13(11), 3359–3375 (2016)
CrossRef
Google Scholar
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N.: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195 (2019)
CrossRef
Google Scholar
Henderson, S.G., Biller, B., Hsieh, M.H., Shortle, J., Tew, J.D., Barton, R.R.: Agent-based modeling and simulation of wildland fire suppression
Google Scholar
Niazi, M.A., Siddique, Q., Hussain, A., Kolberg, M.: Verification and validation of an agent-based forest fire simulation model. In: Proceedings of the 2010 Spring Simulation Multiconference, p. 1. Society for Computer Simulation International, April 2010
Google Scholar
Andrews, P.L.: The Rothermel surface fire spread model and associated developments: A comprehensive explanation. Gen. Technical Report. RMRS-GTR-371. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 121 p. 371 (2018)
Google Scholar
Lenihan, J.M., Daly, C., Bachelet, D., Neilson, R.P.: Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Sci. 72(4), 91–101 (1998)
Google Scholar
Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Thonicke, K.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9(2), 161–185 (2003)
CrossRef
Google Scholar
Arora, V.K., Boer, G.J.: Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research Biogeosciences 110(2) (2005)
Google Scholar
Pfeiffer, M., Spessa, A., Kaplan, J.O.: A model for global biomass burning in preindustrial time: LPJ-LMfire (v1. 0). Geosci. Model Dev. 6(3), 643–685 (2013)
CrossRef
Google Scholar
Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)
CrossRef
Google Scholar
Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)
CrossRef
Google Scholar
Pham, D.T., Dimov, S.S., Nguyen, C.D.: Selection of K in K-means clustering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 219(1), 103–119 (2005)
CrossRef
Google Scholar
Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)
Google Scholar
Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Netw. 7(6), 1329–1338 (1996)
CrossRef
Google Scholar
Diaconescu, E.: The use of NARX neural networks to predict chaotic time series. Wseas Trans. Comput. Res. 3(3), 182–191 (2008)
Google Scholar
Mandic, D.P., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, New York (2001)
CrossRef
Google Scholar
Xingjian, S.H.I., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)
Google Scholar
Overholt, K.J., Ezekoye, O.A.: Quantitative testing of fire scenario hypotheses: a Bayesian inference approach. Fire Technol. 51(2), 335–367 (2015)
CrossRef
Google Scholar
West, M., Harrison, P.J., Migon, H.S.: Dynamic generalized linear models and Bayesian forecasting. J. Am. Stat. Assoc. 80(389), 73–83 (1985)
MathSciNet
CrossRef
Google Scholar