Skip to main content

Machine Learning Classification and Segmentation of Forest Fires in Wide Area Motion Imagery

  • 1020 Accesses

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1070)

Abstract

Numerous models and simulations exist for characterizing and predicting wildland fire behavior. The U.S. Forest Service (USFS) and other organizations have devoted decades of research to identifying the parameters that affect fire movement, rate of spread, and direction of spread across geographic terrain. While this research is invaluable to the firefighting community, due to computational constraints, these models do not run in real time or against imagery at time-of-collect, and therefore do little to assist the firefighter and first responders on the ground during a wildland fire event. We present the first part of a multi-step automated computational methodology to characterize fire behavior and rate of spread in real time across any geographic terrain. This first step is the classification and segmentation of the wildland fire in Wide Area Motion Imagery (WAMI) using Machine Learning (ML) methods. The continuation of this research, detailed herein, will involve training a more robust, purpose-built Recurrent Neural Network architecture incorporating many of the parameters the USFS has been studying for decades. The goal of this research is to deploy models using ‘lite’ ML frameworks on edge devices, mounted on collection platforms for real-time decision support for firefighting operations as imagery and other data are being collected during a wildland fire event.

Keywords

  • Machine learning
  • Forest fires
  • Wide Area Motion Imagery
  • Image classification
  • Image segmentation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-32523-7_7
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-32523-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Fig. 1.

(Source Hantson et al. 2016)

Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

(Source: Alkhoshi & Belkasim)

References

  1. Hoover, K.: Wildfire Statistics. Congressional Research Service. Crs.gov 7-7500 (2018)

    Google Scholar 

  2. Finney, M.A., Grenfell, I.C., McHugh, C.W., Seli, R.C., Trethewey, D., Stratton, R.D., Brittain, S.: A method for ensemble wildland fire simulation. Environ. Model. Assess. 16(2), 153–167 (2011)

    CrossRef  Google Scholar 

  3. Tymstra, C., Bryce, R.W., Wotton, B.M., Taylor, S.W., Armitage, O.B.: Development and structure of Prometheus: the Canadian wildland fire growth simulation model. Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Information Report NOR-X-417, Edmonton, AB (2010)

    Google Scholar 

  4. Hostikka, S.I.M.O., Mangs, J.O.H.A.N., Mikkola, E.S.K.O.: Comparison of two and three dimensional simulations of fires at wildland urban interface. Fire Saf. Sci. 9, 1353–1364 (2008)

    CrossRef  Google Scholar 

  5. Alemany, S., Beltran, J., Perez, A., Ganzfried, S.: Predicting hurricane trajectories using a recurrent neural network. arXiv preprint arXiv:1802.02548 (2018)

  6. Moradi Kordmahalleh, M., Gorji Sefidmazgi, M., Homaifar, A.: A sparse recurrent neural network for trajectory prediction of Atlantic hurricanes. In: Proceedings of the 2016 Genetic and Evolutionary Computation Conference, pp. 957–964. ACM, July 2016

    Google Scholar 

  7. Jiang, G.Q., Xu, J., Wei, J.: A deep learning algorithm of neural network for the parameterization of typhoon-ocean feedback in typhoon forecast models. Geophys. Res. Lett. 45(8), 3706–3716 (2018)

    CrossRef  Google Scholar 

  8. Cui, Y., Olsen, K.B., Jordan, T.H., Lee, K., Zhou, J., Small, P., Levesque, J.: Scalable earthquake simulation on petascale supercomputers. In: SC 2010: Proceedings of the 2010 ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis, pp. 1–20. IEEE, November 2010

    Google Scholar 

  9. Hantson, S., Arneth, A., Harrison, S.P., Kelley, D.I., Prentice, I.C., Rabin, S.S., Bachelet, D.: The status and challenge of global fire modelling. Biogeosciences 13(11), 3359–3375 (2016)

    CrossRef  Google Scholar 

  10. Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N.: Deep learning and process understanding for data-driven earth system science. Nature 566(7743), 195 (2019)

    CrossRef  Google Scholar 

  11. Henderson, S.G., Biller, B., Hsieh, M.H., Shortle, J., Tew, J.D., Barton, R.R.: Agent-based modeling and simulation of wildland fire suppression

    Google Scholar 

  12. Niazi, M.A., Siddique, Q., Hussain, A., Kolberg, M.: Verification and validation of an agent-based forest fire simulation model. In: Proceedings of the 2010 Spring Simulation Multiconference, p. 1. Society for Computer Simulation International, April 2010

    Google Scholar 

  13. Andrews, P.L.: The Rothermel surface fire spread model and associated developments: A comprehensive explanation. Gen. Technical Report. RMRS-GTR-371. Fort Collins, CO: US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 121 p. 371 (2018)

    Google Scholar 

  14. Lenihan, J.M., Daly, C., Bachelet, D., Neilson, R.P.: Simulating broad-scale fire severity in a dynamic global vegetation model. Northwest Sci. 72(4), 91–101 (1998)

    Google Scholar 

  15. Sitch, S., Smith, B., Prentice, I.C., Arneth, A., Bondeau, A., Cramer, W., Thonicke, K.: Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9(2), 161–185 (2003)

    CrossRef  Google Scholar 

  16. Arora, V.K., Boer, G.J.: Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research Biogeosciences 110(2) (2005)

    Google Scholar 

  17. Pfeiffer, M., Spessa, A., Kaplan, J.O.: A model for global biomass burning in preindustrial time: LPJ-LMfire (v1. 0). Geosci. Model Dev. 6(3), 643–685 (2013)

    CrossRef  Google Scholar 

  18. Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R.: Google earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017)

    CrossRef  Google Scholar 

  19. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    CrossRef  Google Scholar 

  20. Pham, D.T., Dimov, S.S., Nguyen, C.D.: Selection of K in K-means clustering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 219(1), 103–119 (2005)

    CrossRef  Google Scholar 

  21. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., Murphy, K.: Speed/accuracy trade-offs for modern convolutional object detectors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7310–7311 (2017)

    Google Scholar 

  22. Lin, T., Horne, B.G., Tino, P., Giles, C.L.: Learning long-term dependencies in NARX recurrent neural networks. IEEE Trans. Neural Netw. 7(6), 1329–1338 (1996)

    CrossRef  Google Scholar 

  23. Diaconescu, E.: The use of NARX neural networks to predict chaotic time series. Wseas Trans. Comput. Res. 3(3), 182–191 (2008)

    Google Scholar 

  24. Mandic, D.P., Chambers, J.: Recurrent Neural Networks for Prediction: Learning Algorithms, Architectures and Stability. Wiley, New York (2001)

    CrossRef  Google Scholar 

  25. Xingjian, S.H.I., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  26. Overholt, K.J., Ezekoye, O.A.: Quantitative testing of fire scenario hypotheses: a Bayesian inference approach. Fire Technol. 51(2), 335–367 (2015)

    CrossRef  Google Scholar 

  27. West, M., Harrison, P.J., Migon, H.S.: Dynamic generalized linear models and Bayesian forecasting. J. Am. Stat. Assoc. 80(389), 73–83 (1985)

    MathSciNet  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melonie Richey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Richey, M., Blum, D., Gregory, M., Ocasio, K., Mostowsky, Z., Chandler, J. (2020). Machine Learning Classification and Segmentation of Forest Fires in Wide Area Motion Imagery. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1070. Springer, Cham. https://doi.org/10.1007/978-3-030-32523-7_7

Download citation