Skip to main content

Automatic Grasping Using Tactile Sensing and Deep Calibration

  • Conference paper
  • First Online:

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1069))

Abstract

Tactile perception is an essential ability of intelligent robots in interaction with their surrounding environments. This perception as an intermediate level acts between sensation and action and has to be defined properly to generate suitable action in response to sensed data. In this paper, we propose a feedback approach to address robot grasping task using force-torque tactile sensing. While visual perception is an essential part for gross reaching, constant utilization of this sensing modality can negatively affect the grasping process with overwhelming computation. In such case, human being utilizes tactile sensing to interact with objects. Inspired by, the proposed approach is presented and evaluated on a real robot to demonstrate the effectiveness of the suggested framework. Moreover, we utilize a deep learning framework called Deep Calibration in order to eliminate the effect of bias in the collected data from the robot sensors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baghbahari, M., Hajiakhoond, N.: Evaluation of estimation approaches on the quality and robustness of collision warning systems. In: SoutheastCon 2018, pp. 1–7. IEEE (2018)

    Google Scholar 

  2. Baghbahari, M., Hajiakhoond, N., Behal, A.: Real-time policy generation and its application to robot grasping. arXiv preprint arxiv:1808.05244 (2018)

  3. Bekiroglu, Y., Laaksonen, J., Jørgensen, J.A., Kyrki, V., Kragic, D.: Assessing grasp stability based on learning and haptic data. IEEE Trans. Rob. 27(3), 616 (2011)

    Article  Google Scholar 

  4. Bohg, J., Hausman, K., Sankaran, B., Brock, O., Kragic, D., Schaal, S., Sukhatme, G.S.: Interactive perception: leveraging action in perception and perception in action. IEEE Trans. Rob. 33(6), 1273–1291 (2017)

    Article  Google Scholar 

  5. Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G.S., Schaal, S.: Self-supervised regrasping using spatio-temporal tactile features and reinforcement learning. In 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1960–1966. IEEE (2016)

    Google Scholar 

  6. Chebotar, Y., Kroemer, O., Peters, J.: Learning robot tactile sensing for object manipulation. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3368–3375. IEEE (2014)

    Google Scholar 

  7. Chitta, S., Sturm, J., Piccoli, M., Burgard, W.: Tactile sensing for mobile manipulation. IEEE Trans. Rob. 27(3), 558–568 (2011)

    Article  Google Scholar 

  8. Cirillo, A., Cirillo, P., De Maria, G., Natale, C., Pirozzi, S.: Control of linear and rotational slippage based on six-axis force/tactile sensor. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1587–1594. IEEE (2017)

    Google Scholar 

  9. Corcoran, C., Platt, R.: A measurement model for tracking hand-object state during dexterous manipulation. In: 2010 IEEE International Conference on Robotics and Automation, pp. 4302–4308. IEEE (2010

    Google Scholar 

  10. Dang, H., Allen, P.K.: Stable grasping under pose uncertainty using tactile feedback. Auton. Rob. 36(4), 309–330 (2014)

    Article  Google Scholar 

  11. Gómez Eguíluz, A., Rano, I., Coleman, S.A., Martin McGinnity, T.: Reliable object handover through tactile force sensing and effort control in the shadow robot hand. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 372–377. IEEE (2017)

    Google Scholar 

  12. Finn, C., Tan, X.Y., Duan, Y., Darrell, T., Levine, S., Abbeel, P.: Deep spatial autoencoders for visuomotor learning. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 512–519. IEEE (2016)

    Google Scholar 

  13. Gao, Y., Hendricks, L.A., Kuchenbecker, K.J., Darrell, T.: Deep learning for tactile understanding from visual and haptic data. In: 2016 IEEE International Conference on Robotics and Automation (ICRA), pp. 536–543. IEEE (2016)

    Google Scholar 

  14. Guo, D., Sun, F., Liu, H., Kong, T., Fang, B., Xi, N.: A hybrid deep architecture for robotic grasp detection. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 1609–1614. IEEE (2017)

    Google Scholar 

  15. Kroemer, O., Lampert, C.H., Peters, J.: Learning dynamic tactile sensing with robust -based training. IEEE Trans. Rob. 27(3), 545–557 (2011)

    Article  Google Scholar 

  16. Lee, M.A., Zhu, Y., Srinivasan, K., Shah, P., Savarese, S., Fei-Fei, L., Garg, A., Bohg, J.: Making sense of vision and touch: self-supervised learning of multimodal representations for contact-rich tasks. arXiv preprint arXiv:1810.10191 (2018)

  17. Li, R., Platt, R., Yuan, W., ten Pas, A., Roscup, N., Srinivasan, M.A., Adelson, E.: Localization and manipulation of small parts using gelsight tactile sensing. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3988–3993. IEEE (2014)

    Google Scholar 

  18. Lin, Y., Sun, Y.: Robot grasp planning based on demonstrated grasp strategies. Int. J. Rob. Res. 34(1), 26–42 (2015)

    Article  MathSciNet  Google Scholar 

  19. Murali, A., Li, Y., Gandhi, D., Gupta, A.: Learning to grasp without seeing. arXiv preprint arXiv:1805.04201 (2018)

  20. Nowak, D.A., Glasauer, S., Hermsdörfer, J.: Force control in object Manipulation’a model for the study of sensorimotor control strategies. Neurosci. Biobehav. Rev. 37(8), 1578–1586 (2013)

    Article  Google Scholar 

  21. Petrovskaya, A., Khatib, O., Thrun, S., Ng, A.Y.: Touch based perception for object manipulation (2007)

    Google Scholar 

  22. Romano, J.M., Hsiao, K., Niemeyer, G., Chitta, S., Kuchenbecker, K.J.: Human-inspired robotic grasp control with tactile sensing. IEEE Trans. Rob. 27(6), 1067–1079 (2011)

    Article  Google Scholar 

  23. Schneider, A., Sturm, J., Stachniss, C., Reisert, M., Burkhardt, H., Burgard, W.: Object identification with tactile sensors using bag-of-features. In: IROS, vol. 9, pp. 243–248 (2009)

    Google Scholar 

  24. van Hoof, H., Chen, N., Karl, M., van der Smagt, P., Peters, J.: Stable reinforcement learning with autoencoders for tactile and visual data. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3928–3934. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Baghbahari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baghbahari, M., Behal, A. (2020). Automatic Grasping Using Tactile Sensing and Deep Calibration. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-030-32520-6_14

Download citation

Publish with us

Policies and ethics