Skip to main content

Efficient Bayesian Expert Models for Fever in Neutropenia and Fever in Neutropenia with Bacteremia

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 1069)

Abstract

Bayesian expert models are very efficient solutions since they can encapsulate in a mathematical consistent way, certain and uncertain knowledge, as well as preferences strategies and policies. Furthermore, the Bayesian modelling framework is the only one that can inference about causal connections and suggest the structure of a reasonable probabilistic model from historic data. Two novel expert models have been developed for a medical issue concerning diagnosis of fever in neutropenia or fever in neutropenia with bacteremia. Supervised and unsupervised learning was used to construct these two the expert models. The best one of them exhibited 93% precision of prediction.

Keywords

  • Bayesian networks
  • Expert model
  • Cancer
  • Neutropenia
  • Bacteraemia

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alexander, S.W., Wade, K.C., Hibberd, P.L., Parsons, S.K.: Evaluation of risk prediction criteria for episodes of febrile neutropenia in children with cancer. J. Pediatr. Hematol. Oncol. 24, 38–42 (2002)

    CrossRef  Google Scholar 

  2. von Allmen, A.N., Zermatten, M.G., Leibundgut, K., Agyeman, P., Ammann, R.A.: Pediatric patients at risk for fever in chemotherapy-induced neutropenia in Bern, Switzerland, 1993–2012. Sci. Data 5 (2018). https://doi.org/10.1038/sdata.2018.38

  3. Ammann, R.A.: Predicting adverse events in children with fever and chemotherapy-induced neutropenia: the prospective multicenter SPOG 2003 FN study. J. Clin. Oncol. 28, 2008–2014 (2010)

    CrossRef  Google Scholar 

  4. Ammann, R.A., Aebi, C., Hirt, A., Ridolfi Lüthy, A.: Fever in neutropenia in children and adolescents: evolution over time of main characteristics in a single center, 1993–2001. Support. Care Cancer 12, 826–832 (2004)

    CrossRef  Google Scholar 

  5. Ammann, R.A., Teuffel, O., Agyeman, P., Amport, N., Leibundgut, K.: The influence of different fever definitions on the rate of fever in neutropenia diagnosed in children with cancer. PLoS ONE 10, e0117528 (2015)

    CrossRef  Google Scholar 

  6. Binz, P.: Different fever definitions and the rate of fever and neutropenia diagnosed in children with cancer: a retrospective two-center cohort study. Pediatr. Blood Cancer 60, 799–805 (2013)

    CrossRef  Google Scholar 

  7. Bodey, G.P., Buckley, M., Sathe, Y.S., Freireich, E.J.: Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 64, 328–340 (1966)

    CrossRef  Google Scholar 

  8. Boragina, A., Patel, H., Reiter, S., Dougherty, G.: Management of febrile neutropenia in pediatric oncology patients: a canadian survey. Pediatr. Blood Cancer 48, 521–526 (2007)

    CrossRef  Google Scholar 

  9. Walsh, T.J., Finberg, R.W., Arndt, C., Hiemenz, J., Schwartz, C., Bodensteiner, D., Pappas, P., Seibel, N., Greenberg, R.N., Dummer, S., Schuster, M.: Empirical therapy in patients with persistent fever and neutropenia. New England J. Med. 340(10), 764–771 (1999). https://doi.org/10.1056/NEJM199903113401004

    CrossRef  Google Scholar 

  10. Gafter-Gvili, A.: Antibiotic prophylaxis for bacterial infections in afebrile neutropenic patients following chemotherapy. Cochrane Database Syst. Rev. CD004386 (2012)

    Google Scholar 

  11. Hann, I., Viscoli, C., Paesmans, M., Gaya, H., Glauser, M.: A comparison of outcome from febrile neutropenic episodes in children compared with adults: results from four EORTC Studies. International Antimicrobial Therapy Cooperative Group (IATCG) of the European Organization for Research and Treatment of Cancer (EORTC). Br. J. Haematol. 99, 580–588 (1997)

    CrossRef  Google Scholar 

  12. Hinds, P.S., Drew, D., Oakes, L.L., Fouladi, M., Spunt, S.L., Church, C., Furman, W.L.: End-of-life care preferences of pediatric patients with cancer. J. Clin. Oncol. 23(36), 9146–9154 (2005). https://doi.org/10.1200/JCO.2005.10.538

    CrossRef  Google Scholar 

  13. Kern, W.V.: Oral versus intravenous empirical antimicrobial therapy for fever in patients with granulocytopenia who are receiving cancer chemotherapy. International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer. N. Engl. J. Med. 341, 312–318 (1999)

    CrossRef  Google Scholar 

  14. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical structures and their application to expert systems. J. Roy. Stat. Soc.: Ser. B (Methodol.) 50(2), 157–224 (1988)

    MathSciNet  MATH  Google Scholar 

  15. Lehrnbecher, T.: Guideline for the management of fever and neutropenia in children with cancer and hematopoietic stem cell transplantation recipients: 2017 update. J. Clin. Oncol. 35, 2082–2094 (2017)

    CrossRef  Google Scholar 

  16. Lehrnbecher, T., Sung, L.: Anti-infective prophylaxis in pediatric patients with acute myeloid leukemia. Expert Rev. Hematol 7, 819–830 (2014)

    CrossRef  Google Scholar 

  17. Macher, E.: Predicting the risk of severe bacterial infection in children with chemotherapy-induced febrile neutropenia. Pediatr. Blood Cancer 55, 662–667 (2010)

    CrossRef  Google Scholar 

  18. Michel, G.: Incidence of childhood cancer in Switzerland: the Swiss childhood cancer registry. Pediatr. Blood Cancer 50, 46–51 (2008)

    CrossRef  Google Scholar 

  19. Morgan, J.E., Cleminson, J., Atkin, K., Stewart, L.A., Phillips, R.S.: Systematic review of reduced therapy regimens for children with low risk febrile neutropenia. Support. Care Cancer 24, 2651–2660 (2016)

    CrossRef  Google Scholar 

  20. Nimah, M.M., Bshesh, K., Callahan, J.D., Jacobs, B.R.: Infrared tympanic thermometry in comparison with other temperature measurement techniques in febrile children. Pediatr. Crit. Care. Med. 7, 48–55 (2006)

    CrossRef  Google Scholar 

  21. Onisko, A., Druzdzel, M.J., Marshall Austin, R.: Application of Bayesian network modeling to pathology informatics. Diagn. Cytopathol. 47(1), 41–47 (2019). https://doi.org/10.1002/dc.23993

    CrossRef  Google Scholar 

  22. Phillips, R.S.: Predicting microbiologically defined infection in febrile neutropenic episodes in children: global individual participant data multivariable meta-analysis. Brit. J. Cancer 114, 623–630 (2016)

    CrossRef  Google Scholar 

  23. Phillips, R.S., Bhuller, K., Sung, L., Ammann, R.A.: Risk stratification in febrile neutropenic episodes in adolescent/young adult patients with cancer. Eur. J. Cancer 64, 101–106 (2016)

    CrossRef  Google Scholar 

  24. Pizzo, P.A., Robichaud, K.J., Wesley, R., Commers, J.R.: Fever in the pediatric and young adult patient with cancer. A prospective study of 1001 episodes. Med. (Baltimore) 6, 153–165 (1982)

    CrossRef  Google Scholar 

  25. ProceedingsVol2.Pdf: n.d. Accessed 28 Mar 2019. https://iris.unipa.it/retrieve/handle/10447/221666/444325/proceedingsVol2.pdf#page=27

  26. Rackoff, W.R., Gonin, R., Robinson, C., Kreissman, S.G., Breitfeld, P.B.: Predicting the risk of bacteremia in children with fever and neutropenia. J. Clin. Oncol. 14(3), 919–924 (1996). https://doi.org/10.1200/JCO.1996.14.3.919

    CrossRef  Google Scholar 

  27. Penna, R., Raphaele, G.C.-T., Comperat, E., Mozer, P., Léon, P., Varinot, J., Roupret, M., Bitker, M.-O., Lucidarme, O., Cussenot, O.: Apparent diffusion coefficient value is a strong predictor of unsuspected aggressiveness of prostate cancer before radical prostatectomy. World J. Urol. 34(10), 1389–1395 (2016). https://doi.org/10.1007/s00345-016-1789-3

    CrossRef  Google Scholar 

  28. Robinson, P.D., Lehrnbecher, T., Phillips, R., Dupuis, L.L., Sung, L.: Strategies for empiric management of pediatric fever and neutropenia in patients with cancer and hematopoietic stem-cell transplantation recipients: a systematic review of randomized trials. J. Clin. Oncol. 34, 2054–2060 (2016)

    CrossRef  Google Scholar 

  29. Schlapbach, L.J.: Serum levels of mannose-binding lectin and the risk of fever in neutropenia pediatric cancer patients. Pediatr. Blood Cancer 49, 11–16 (2007)

    CrossRef  Google Scholar 

  30. Sedgwick, P.: Pearson’s correlation coefficient. BMJ 345, e4483 (2012). https://doi.org/10.1136/bmj.e4483

    CrossRef  Google Scholar 

  31. Seixas, A.A., Henclewood, D.A., Langford, A.T., McFarlane, S.I., Zizi, F., Jean-Louis, G.: Differential and combined effects of physical activity profiles and prohealth behaviors on diabetes prevalence among blacks and whites in the US population: a novel Bayesian belief network machine learning analysis. Research Article. J. Diab. Res. (2017). https://doi.org/10.1155/2017/5906034

    CrossRef  Google Scholar 

  32. Azizi, S., Dwayne, H., Stephen, W., Olajide, W., April, R., Gbenga, O., Girardin, J.-L.: Abstract WP171 long sleep is a stronger predictor of stroke than short sleep: comparative analysis of multiple linear regression model and Bayesian belief network model. Stroke 47(suppl_1), AWP171 (2016). https://doi.org/10.1161/str.47.suppl_1.wp171

  33. Singer, D.E., Mulley, A.G., Octo Barnett, G., Thibault, G.E., Morgan, M.M., Skinner, E.R.: The course of patients with suspected myocardial infarction - prediction of complications using a computer-based databank. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, vol. 3, pp. 1590–1593, November 1980

    Google Scholar 

  34. Tramsen, L.: Lack of effectiveness of neutropenic diet and social restrictions as anti-infective measures in children with acute myeloid leukemia: an analysis of the AML-BFM 2004 trial. J. Clin. Oncol. 34, 2776–2783 (2016)

    CrossRef  Google Scholar 

  35. USA, Bayesia. n.d.: BayesiaLab 8 - Bayesian Networks for Research, Analytics, and Reasoning. Accessed 18 Feb 2019. https://www.bayesialab.com

  36. Walsh, T.J., Finberg, R.W., Arndt, C., Hiemenz, J., Schwartz, C., Bodensteiner, D., Pappas, P., et al.: Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia (1999)

    CrossRef  Google Scholar 

  37. Wicki, S.: Risk prediction of fever in neutropenia in children with cancer: a step towards individually tailored supportive therapy? Pediatr. Blood Cancer 51, 778–783 (2008)

    CrossRef  Google Scholar 

  38. Bapin, Y., Zarikas, V.: Smart building’s elevator with intelligent control algorithm based on bayesian networks. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 10(2), 16–24 (2019)

    Google Scholar 

  39. Zarikas, V.: Modeling decisions under uncertainty in adaptive user interfaces. Univ. Access Inf. Soc. 6(1), 87–101 (2007)

    CrossRef  Google Scholar 

  40. Zarikas, V., Papageorgiou, E., Regner, P.: Bayesian network construction using a fuzzy rule based approach for medical decision support. Expert Syst. 32(3), 344–369 (2015)

    CrossRef  Google Scholar 

  41. Zhang, Y., Guo, S.-L., Han, L.-N., Li, T.-L.: Application and exploration of big data mining in clinical medicine. Chin. Med. J. 129(6), 731–738 (2016). https://doi.org/10.4103/0366-6999.178019

    CrossRef  Google Scholar 

  42. Knudsen, S.: Cancer Diagnostics with DNA Microarrays. Wiley-Liss, Hoboken (2006)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasilios Zarikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Darmeshov, B., Zarikas, V. (2020). Efficient Bayesian Expert Models for Fever in Neutropenia and Fever in Neutropenia with Bacteremia. In: Arai, K., Bhatia, R., Kapoor, S. (eds) Proceedings of the Future Technologies Conference (FTC) 2019. FTC 2019. Advances in Intelligent Systems and Computing, vol 1069. Springer, Cham. https://doi.org/10.1007/978-3-030-32520-6_11

Download citation