Skip to main content

UC-GAN for MR to CT Image Synthesis

  • Conference paper
  • First Online:
Artificial Intelligence in Radiation Therapy (AIRT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11850))

Included in the following conference series:

Abstract

Accurate MR-to-CT synthesis plays an important role in MRI-only radiotherapy treatment planning. In medical image synthesis, the cycle-generative adversarial network (CycleGAN) is becoming an influential method, however, its image quality of synthesis is not optimal yet. In this study, we proposed a new learning method named U-Net-CycleGAN (UC-GAN) to generate synthetic CT (sCT) image for MRI-only radiation treatment planning, which integrated an improved U-Net concept into the original CycleGAN framework. After experimental comparison, The MAE value and PSNR of our UC-GAN model are 76.7 ± 4.5 and 46.1 ± 1.5, respectively, which are statistics significantly better than the 94.0 ± 4.3 (MAE) and 45.1 ± 1.5 (PSNR) of the original CycleGAN model. The results of our quantitative evaluation show that the UC-GAN model can synthesize a CT image closer to the reference real CT image with better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmund, J.M., Nyholm, T.: A review of substitute CT generation for MRI-only radiation therapy. Radiat. Oncol. 12(1), 28 (2017)

    Article  Google Scholar 

  2. Huo, Y., et al.: SynSeg-Net: synthetic segmentation without target modality ground truth. IEEE Trans. Med. Imag. 38(4), 1016–1025 (2018)

    Article  Google Scholar 

  3. Dowling, J.A., et al.: An atlas-based electron density mapping method for magnetic resonance imaging (MRI)-alone treatment planning and adaptive MRI-based prostate radiation therapy. Int. J. Radiat. Oncol. Biol. Phys. 83(1), e5–e11 (2012)

    Article  Google Scholar 

  4. Chin, A.L., Lin, A., Anamalayil, S., Teo, B.K.: Feasibility and limitations of bulk density assignment in MRI for head and neck IMRT treatment planning. J. Appl. Clin. Med. Phys. 15(5), 100–111 (2014)

    Article  Google Scholar 

  5. Van Nguyen, V., Zhou, K., Vemulapalli, R.: Cross-domain synthesis of medical images using efficient location-sensitive deep network. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part I. LNCS, vol. 9349, pp. 677–684. Springer, Heidelberg (2015)

    Google Scholar 

  6. Kapanen, M., Tenhunen, M.: T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning. Acta Oncol. 52(3), 612–618 (2013)

    Article  Google Scholar 

  7. Johansson, A., Karlsson, M., Nyholm, T.: CT substitute derived from MRI sequences with ultrashort echo time. Med. Phys. 38(5), 2708–2714 (2011)

    Article  Google Scholar 

  8. Zheng, W., Kim, J.P., Kadbi, M., Movsas, B., Chetty, I.J., Glide-Hurst, C.K.: Magnetic resonance-based automatic air segmentation for generation of synthetic computed tomography scans in the head region. Int. J. Radiat. Oncol. Biol. Phys. 93(3), 497–506 (2015)

    Article  Google Scholar 

  9. Sevetlidis, V., Giuffrida, M.V., Tsaftaris, S.A.: Whole image synthesis using a deep encoder-decoder network. In: Tsaftaris, S.A., Gooya, A., Frangi, A.F., Prince, J.L. (eds.) SASHIMI 2016. LNCS, vol. 9968, pp. 127–137. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46630-9_13

    Chapter  Google Scholar 

  10. Xiang, L., et al.: Deep embedding convolutional neural network for synthesizing CT image from T1-Weighted MR image. Med. Image Anal. 47, 31–44 (2018)

    Article  Google Scholar 

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  12. Nie, D., et al.: Medical image synthesis with context-aware generative adversarial networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 417–425. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_48

    Chapter  Google Scholar 

  13. Yi, Z., Zhang, H., Tan, P., Gong, M.: DualGAN: unsupervised dual learning for image-to-image translation. In: 2017 IEEE ICCV, pp. 2849–2857. IEEE (2017)

    Google Scholar 

  14. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: 2017 IEEE ICCV, pp. 2223–2232. IEEE (2017)

    Google Scholar 

  15. Han, X.: MR-based synthetic CT generation using a deep convolutional neural network method. Med. Phys. 44(4), 1408–1419 (2017)

    Article  Google Scholar 

  16. Nie, D., Cao, X., Gao, Y., Wang, L., Shen, D.: Estimating CT image from MRI data using 3D fully convolutional networks. In: Carneiro, G., et al. (eds.) Deep Learning and Data Labeling for Medical Applications, pp. 170–178. Springer, Cham (2016)

    Google Scholar 

  17. Wolterink, J.M., Dinkla, A.M., Savenije, M.H., Seevinck, P.R., van den Berg, C.A.T., Išgum, I.: Deep MR to CT synthesis using unpaired data. In: International Workshop on Simulation and Synthesis in Medical Imaging, pp. 14–23 (2017)

    Chapter  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Jin, C.B., et al.: Deep CT to MR synthesis using paired and unpaired data. Sensors (Basel) 19(10), E2361 (2019)

    Article  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by Shenzhen Key Basic Science Program (JCYJ20170413162213765 and JCYJ20180507182437217), the Shenzhen Key Laboratory Program (ZDSYS201707271637577), the NSFC-Shenzhen Union Program (U1613221), and the National Key Research and Development Program (2017YFC0110903).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fucang Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, H., Jiang, X., Jia, F. (2019). UC-GAN for MR to CT Image Synthesis. In: Nguyen, D., Xing, L., Jiang, S. (eds) Artificial Intelligence in Radiation Therapy. AIRT 2019. Lecture Notes in Computer Science(), vol 11850. Springer, Cham. https://doi.org/10.1007/978-3-030-32486-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32486-5_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32485-8

  • Online ISBN: 978-3-030-32486-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics