Skip to main content

Pathology and Molecular Pathology of Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Hodgkin lymphoma (HL) comprises two distinct disease entities, classical HL (cHL) and nodular lymphocyte-predominant HL (LPHL). They have in common that the tumor cells—Hodgkin and Reed-Sternberg (HRS) cells in cHL and lymphocyte-predominant (LP) cells in LPHL—are typically large, either mononucleated or multinucleated cells that represent at most a few percent of cells in the lymphoma tissue. The two forms of HL differ in numerous aspects of their histological picture, and the morphology of the lymphoma cells, their phenotype, and their genetic features. HRS and LP cells both derive from germinal center B cells, albeit likely from distinct subsets of these mature B cells. HRS cells have lost most of the B cell phenotype and gene expression pattern of their cellular origin. HRS cells show an activation of numerous signaling pathways, and particularly the NF-κB and JAK/STAT pathways are often constitutively activated through genetic lesions. Other genetic lesions contribute to immune evasion of the HRS cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al (2008) Classification of tumours of haematopoietic and lymphoid tissues, 4th edn. IARC Press, Lyon

    Google Scholar 

  2. Carbone A, Gloghini A, Gaidano G, Franceschi S, Capello D, Drexler HG et al (1998) Expression status of BCL-6 and syndecan-1 identifies distinct histogenetic subtypes of Hodgkin’s disease. Blood 92:2220–2228

    CAS  PubMed  Google Scholar 

  3. Greiner A, Tobollik S, Buettner M, Jungnickel B, Herrmann K, Kremmer E et al (2005) Differential expression of activation-induced cytidine deaminase (AID) in nodular lymphocyte-predominant and classical Hodgkin lymphoma. J Pathol 205:541–547

    Article  CAS  PubMed  Google Scholar 

  4. Hartmann S, Eichenauer DA, Plutschow A, Mottok A, Bob R, Koch K et al (2013) The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood 122:4246–4252

    Article  CAS  PubMed  Google Scholar 

  5. Hansmann ML, Fellbaum C, Hui PK, Zwingers T (1988) Correlation of content of B cells and Leu7-positive cells with subtype and stage in lymphocyte predominance type Hodgkin's disease. J Cancer Res Clin Oncol 114:405–410

    Article  CAS  PubMed  Google Scholar 

  6. Kamel OW, Gelb AB, Shibuya RB, Warnke RA (1993) Leu 7 (CD57) reactivity distinguishes nodular lymphocyte predominance Hodgkin's disease from nodular sclerosing Hodgkin's disease, T-cell-rich B-cell lymphoma and follicular lymphoma. Am J Pathol 142:541–546

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Nam-Cha SH, Roncador G, Sanchez-Verde L, Montes-Moreno S, Acevedo A, Dominguez-Franjo P et al (2008) PD-1, a follicular T-cell marker useful for recognizing nodular lymphocyte-predominant Hodgkin lymphoma. Am J Surg Pathol 32:1252–1257

    Article  PubMed  Google Scholar 

  8. Liu Y, Abdul Razak FR, Terpstra M, Chan FC, Saber A, Nijland M et al (2014) The mutational landscape of Hodgkin lymphoma cell lines determined by whole-exome sequencing. Leukemia 28:2248–2251

    Article  CAS  PubMed  Google Scholar 

  9. Reichel J, Chadburn A, Rubinstein PG, Giulino-Roth L, Tam W, Liu Y et al (2015) Flow-sorting and exome sequencing reveals the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 125:1061–1072

    Article  CAS  PubMed  Google Scholar 

  10. Tiacci E, Ladewig E, Schiavoni G, Penson A, Fortini E, Pettirossi V et al (2018) Pervasive mutations of JAK-STAT pathway genes in classical Hodgkin lymphoma. Blood 131:2454–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Foss HD, Reusch R, Demel G, Lenz G, Anagnostopoulos I, Hummel M et al (1999) Frequent expression of the B-cell-specific activator protein in Reed-Sternberg cells of classical Hodgkin’s disease provides further evidence for its B-cell origin. Blood 94:3108–3113

    Article  CAS  PubMed  Google Scholar 

  12. Korkolopoulou P, Cordell J, Jones M, Kaklamanis L, Tsenga A, Gatter KC et al (1994) The expression of the B-cell marker mb-1 (CD79a) in Hodgkin’s disease. Histopathology 24:511–515

    Article  CAS  PubMed  Google Scholar 

  13. Kuzu I, Delsol G, Jones M, Gatter KC, Mason DY (1993) Expression of the Ig-associated heterodimer (mb-1 and B29) in Hodgkin’s disease. Histopathology 22:141–144

    Article  CAS  PubMed  Google Scholar 

  14. Müschen M, Rajewsky K, Bräuninger A, Baur AS, Oudejans JJ, Roers A et al (2000) Rare occurrence of classical Hodgkin’s disease as a T cell lymphoma. J Exp Med 191:387–394

    Article  PubMed  PubMed Central  Google Scholar 

  15. Seitz V, Hummel M, Marafioti T, Anagnostopoulos I, Assaf C, Stein H (2000) Detection of clonal T-cell receptor gamma-chain gene rearrangements in Reed-Sternberg cells of classic Hodgkin disease. Blood 95:3020–3024

    Article  CAS  PubMed  Google Scholar 

  16. Mani H, Jaffe ES (2009) Hodgkin lymphoma: an update on its biology with new insights into classification. Clin Lymphoma Myeloma 9:206–216

    Article  PubMed  PubMed Central  Google Scholar 

  17. Traverse-Glehen A, Pittaluga S, Gaulard P, Sorbara L, Alonso MA, Raffeld M et al (2005) Mediastinal gray zone lymphoma: the missing link between classic Hodgkin’s lymphoma and mediastinal large B-cell lymphoma. Am J Surg Pathol 29:1411–1421

    Article  PubMed  Google Scholar 

  18. Eckerle S, Brune V, Döring C, Tiacci E, Bohle V, Sundstrom C et al (2009) Gene expression profiling of isolated tumour cells from anaplastic large cell lymphomas: insights into its cellular origin, pathogenesis and relation to Hodgkin lymphoma. Leukemia 23(11):2129–2138

    Article  CAS  PubMed  Google Scholar 

  19. Asano N, Yamamoto K, Tamaru J, Oyama T, Ishida F, Ohshima K et al (2009) Age-related Epstein-Barr virus (EBV)-associated B-cell lymphoproliferative disorders: comparison with EBV-positive classic Hodgkin lymphoma in elderly patients. Blood 113:2629–2636

    Article  CAS  PubMed  Google Scholar 

  20. Kanzler H, Küppers R, Hansmann ML, Rajewsky K (1996) Hodgkin and Reed-Sternberg cells in Hodgkin’s disease represent the outgrowth of a dominant tumor clone derived from (crippled) germinal center B cells. J Exp Med 184:1495–1505

    Article  CAS  PubMed  Google Scholar 

  21. Küppers R, Rajewsky K, Zhao M, Simons G, Laumann R, Fischer R et al (1994) Hodgkin disease: Hodgkin and Reed-Sternberg cells picked from histological sections show clonal immunoglobulin gene rearrangements and appear to be derived from B cells at various stages of development. Proc Natl Acad Sci U S A 91:10962–10966

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marafioti T, Hummel M, Foss H-D, Laumen H, Korbjuhn P, Anagnostopoulos I et al (2000) Hodgkin and Reed-Sternberg cells represent an expansion of a single clone originating from a germinal center B-cell with functional immunoglobulin gene rearrangements but defective immunoglobulin transcription. Blood 95:1443–1450

    Article  CAS  PubMed  Google Scholar 

  23. Müschen M, Küppers R, Spieker T, Bräuninger A, Rajewsky K, Hansmann ML (2001) Molecular single-cell analysis of Hodgkin- and Reed-Sternberg cells harboring unmutated immunoglobulin variable region genes. Lab Invest 81:289–295

    Article  PubMed  Google Scholar 

  24. Küppers R, Zhao M, Hansmann ML, Rajewsky K (1993) Tracing B cell development in human germinal centres by molecular analysis of single cells picked from histological sections. EMBO J 12:4955–4967

    Article  PubMed  PubMed Central  Google Scholar 

  25. Küppers R, Rajewsky K (1998) The origin of Hodgkin and Reed/Sternberg cells in Hodgkin’s disease. Annu Rev Immunol 16:471–493

    Article  PubMed  Google Scholar 

  26. Lebecque S, de Bouteiller O, Arpin C, Banchereau J, Liu YJ (1997) Germinal center founder cells display propensity for apoptosis before onset of somatic mutation. J Exp Med 185:563–571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bräuninger A, Hansmann ML, Strickler JG, Dummer R, Burg G, Rajewsky K et al (1999) Identification of common germinal-center B-cell precursors in two patients with both Hodgkin’s disease and Non-Hodgkin’s lymphoma. N Engl J Med 340:1239–1247

    Article  PubMed  Google Scholar 

  28. Küppers R, Sousa AB, Baur AS, Strickler JG, Rajewsky K, Hansmann ML (2001) Common germinal-center B-cell origin of the malignant cells in two composite lymphomas, involving classical Hodgkin's disease and either follicular lymphoma or B-CLL. Mol Med 7:285–292

    Article  PubMed  PubMed Central  Google Scholar 

  29. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Huhn D, Stein H (1999) Classical Hodgkin's disease and follicular lymphoma originating from the same germinal center B cell. J Clin Oncol 17:3804–3809

    Article  CAS  PubMed  Google Scholar 

  30. Küppers R, Dührsen U, Hansmann ML (2014) Pathogenesis, diagnosis, and treatment of composite lymphomas. Lancet Oncol 15:e435–e446

    Article  PubMed  CAS  Google Scholar 

  31. Weniger MA, Tiacci E, Schneider S, Arnolds J, Rüschenbaum S, Duppach J et al (2018) Human CD30+ B cells represent a unique subset related to Hodgkin lymphoma cells. J Clin Invest 128:2996–3007

    Article  PubMed  PubMed Central  Google Scholar 

  32. Montes-Moreno S, Roncador G, Maestre L, Martinez N, Sanchez-Verde L, Camacho FI et al (2008) Gcet1 (centerin), a highly restricted marker for a subset of germinal center-derived lymphomas. Blood 111:351–358

    Article  CAS  PubMed  Google Scholar 

  33. Natkunam Y, Lossos IS, Taidi B, Zhao S, Lu X, Ding F et al (2005) Expression of the human germinal center-associated lymphoma (HGAL) protein, a new marker of germinal center B-cell derivation. Blood 105:3979–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Braeuninger A, Küppers R, Strickler JG, Wacker HH, Rajewsky K, Hansmann ML (1997) Hodgkin and Reed-Sternberg cells in lymphocyte predominant Hodgkin disease represent clonal populations of germinal center-derived tumor B cells. Proc Natl Acad Sci U S A 94:9337–9342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Marafioti T, Hummel M, Anagnostopoulos I, Foss HD, Falini B, Delsol G et al (1997) Origin of nodular lymphocyte-predominant Hodgkin's disease from a clonal expansion of highly mutated germinal-center B cells. N Engl J Med 337:453–458

    Article  CAS  PubMed  Google Scholar 

  36. Ohno T, Stribley JA, Wu G, Hinrichs SH, Weisenburger DD, Chan WC (1997) Clonality in nodular lymphocyte-predominant Hodgkin’s disease. N Engl J Med 337:459–465

    Article  CAS  PubMed  Google Scholar 

  37. Brune V, Tiacci E, Pfeil I, Döring C, Eckerle S, van Noesel CJM et al (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205:2251–2268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Küppers R, Bräuninger A, Müschen M, Distler V, Hansmann ML, Rajewsky K (2001) Evidence that Hodgkin and Reed-Sternberg cells in Hodgkin disease do not represent cell fusions. Blood 97:818–821

    Article  PubMed  Google Scholar 

  39. Drexler HG, Gignac SM, Hoffbrand AV, Minowada J (1989) Formation of multinucleated cells in a Hodgkin’s-disease-derived cell line. Int J Cancer 43:1083–1090

    Article  CAS  PubMed  Google Scholar 

  40. Newcom SR, Kadin ME, Phillips C (1988) L-428 Reed-Sternberg cells and mononuclear Hodgkin's cells arise from a single cloned mononuclear cell. Int J Cell Cloning 6:417–431

    Article  CAS  PubMed  Google Scholar 

  41. Ikeda J, Mamat S, Tian T, Wang Y, Rahadiani N, Aozasa K et al (2010) Tumorigenic potential of mononucleated small cells of Hodgkin lymphoma cell lines. Am J Pathol 177:3081–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rengstl B, Newrzela S, Heinrich T, Weiser C, Thalheimer FB, Schmid F et al (2013) Incomplete cytokinesis and re-fusion of small mononucleated Hodgkin cells lead to giant multinucleated Reed-Sternberg cells. Proc Natl Acad Sci U S A 110:20729–20734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xavier de Carvalho A, Maiato H, Maia AF, Ribeiro SA, Pontes P, Bickmore W et al (2015) Reed-Sternberg cells form by abscission failure in the presence of functional Aurora B kinase. PLoS One 10:e0124629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Nakashima M, Ishii Y, Watanabe M, Togano T, Umezawa K, Higashihara M et al (2010) The side population, as a precursor of Hodgkin and Reed-Sternberg cells and a target for nuclear factor-kappaB inhibitors in Hodgkin’s lymphoma. Cancer Sci 101:2490–2496

    Article  CAS  PubMed  Google Scholar 

  45. Shafer JA, Cruz CR, Leen AM, Ku S, Lu A, Rousseau A et al (2010) Antigen-specific cytotoxic T lymphocytes can target chemoresistant side-population tumor cells in Hodgkin lymphoma. Leuk Lymphoma 51:870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jansen MP, Hopman AH, Bot FJ, Haesevoets A, Stevens-Kroef MJ, Arends JW et al (1999) Morphologically normal, CD30-negative B-lymphocytes with chromosome aberrations in classical Hodgkin’s disease: the progenitor cell of the malignant clone? J Pathol 189:527–532

    Article  CAS  PubMed  Google Scholar 

  47. Spieker T, Kurth J, Küppers R, Rajewsky K, Bräuninger A, Hansmann ML (2000) Molecular single-cell analysis of the clonal relationship of small Epstein-Barr virus-infected cells and Epstein-Barr virus-harboring Hodgkin and Reed/Sternberg cells in Hodgkin disease. Blood 96:3133–3138

    Article  CAS  PubMed  Google Scholar 

  48. Jones RJ, Gocke CD, Kasamon YL, Miller CB, Perkins B, Barber JP et al (2009) Circulating clonotypic B cells in classic Hodgkin lymphoma. Blood 113:5920–5926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Küppers R (2009) Clonogenic B cells in classic Hodgkin lymphoma. Blood 114:3970–3971

    Article  PubMed  Google Scholar 

  50. Vockerodt M, Soares M, Kanzler H, Küppers R, Kube D, Hansmann ML et al (1998) Detection of clonal Hodgkin and Reed-Sternberg cells with identical somatically mutated and rearranged VH genes in different biopsies in relapsed Hodgkin’s disease. Blood 92:2899–2907

    Article  CAS  PubMed  Google Scholar 

  51. Weber-Matthiesen K, Deerberg J, Poetsch M, Grote W, Schlegelberger B (1995) Numerical chromosome aberrations are present within the CD30+ Hodgkin and Reed-Sternberg cells in 100% of analyzed cases of Hodgkin’s disease. Blood 86:1464–1468

    Article  CAS  PubMed  Google Scholar 

  52. Martin-Subero JI, Klapper W, Sotnikova A, Callet-Bauchu E, Harder L, Bastard C et al (2006) Chromosomal breakpoints affecting immunoglobulin loci are recurrent in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Cancer Res 66:10332–10338

    Article  CAS  PubMed  Google Scholar 

  53. Szymanowska N, Klapper W, Gesk S, Küppers R, Martin-Subero JI, Siebert R (2008) BCL2 and BCL3 are recurrent translocation partners of the IGH locus. Cancer Genet Cytogenet 186:110–114

    Article  CAS  PubMed  Google Scholar 

  54. Gravel S, Delsol G, Al Saati T (1998) Single-cell analysis of the t(14;18)(q32;p21) chromosomal translocation in Hodgkin's disease demonstrates the absence of this transformation in neoplastic Hodgkin and Reed-Sternberg cells. Blood 91:2866–2874

    Article  CAS  PubMed  Google Scholar 

  55. Poppema S, Kaleta J, Hepperle B (1992) Chromosomal abnormalities in patients with Hodgkin's disease: evidence for frequent involvement of the 14q chromosomal region but infrequent bcl-2 gene rearrangement in Reed-Sternberg cells. J Natl Cancer Inst 84:1789–1793

    Article  CAS  PubMed  Google Scholar 

  56. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P et al (2011) MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 471:377–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Renné C, Martin-Subero JI, Hansmann ML, Siebert R (2005) Molecular cytogenetic analyses of immunoglobulin loci in nodular lymphocyte predominant Hodgkin’s lymphoma reveal a recurrent IGH-BCL6 juxtaposition. J Mol Diagn 7:352–356

    Article  PubMed  PubMed Central  Google Scholar 

  58. Wlodarska I, Nooyen P, Maes B, Martin-Subero JI, Siebert R, Pauwels P et al (2003) Frequent occurrence of BCL6 rearrangements in nodular lymphocyte predominance Hodgkin lymphoma but not in classical Hodgkin lymphoma. Blood 101:706–710

    Article  CAS  PubMed  Google Scholar 

  59. Wlodarska I, Stul M, De Wolf-Peeters C, Hagemeijer A (2004) Heterogeneity of BCL6 rearrangements in nodular lymphocyte predominant Hodgkin’s lymphoma. Haematologica 89:965–972

    CAS  PubMed  Google Scholar 

  60. Maggio EM, van den Berg A, de Jong D, Diepstra A, Poppema S (2003) Low frequency of FAS mutations in Reed-Sternberg cells of Hodgkin’s lymphoma. Am J Pathol 162:29–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Müschen M, Re D, Bräuninger A, Wolf J, Hansmann ML, Diehl V et al (2000) Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res 60:5640–5643

    PubMed  Google Scholar 

  62. Thomas RK, Schmitz R, Harttrampf AC, Abdil-Hadi A, Wickenhauser C, Distler V et al (2005) Apoptosis-resistant phenotype of classical Hodgkin’s lymphoma is not mediated by somatic mutations within genes encoding members of the death-inducing signaling complex (DISC). Leukemia 19:1079–1082

    Article  PubMed  CAS  Google Scholar 

  63. Bose S, Starczynski J, Chukwuma M, Baumforth K, Wei W, Morgan S et al (2007) Down-regulation of ATM protein in HRS cells of nodular sclerosis Hodgkin’s lymphoma in children occurs in the absence of ATM gene inactivation. J Pathol 213:329–336

    Article  CAS  PubMed  Google Scholar 

  64. Lespinet V, Terraz F, Recher C, Campo E, Hall J, Delsol G et al (2005) Single-cell analysis of loss of heterozygosity at the ATM gene locus in Hodgkin and Reed-Sternberg cells of Hodgkin’s lymphoma: ATM loss of heterozygosity is a rare event. Int J Cancer 114:909–916

    Article  CAS  PubMed  Google Scholar 

  65. Schmitz R, Thomas RK, Harttrampf AC, Wickenhauser C, Schultze JL, Hansmann ML et al (2006) The major subtypes of human B-cell lymphomas lack mutations in BCL-2 family member BAD. Int J Cancer 119:1738–1740

    Article  CAS  PubMed  Google Scholar 

  66. Maggio EM, Stekelenburg E, Van den Berg A, Poppema S (2001) TP53 gene mutations in Hodgkin lymphoma are infrequent and not associated with absence of Epstein-Barr virus. Int J Cancer 94:60–66

    Article  CAS  PubMed  Google Scholar 

  67. Montesinos-Rongen M, Roers A, Küppers R, Rajewsky K, Hansmann M-L (1999) Mutation of the p53 gene is not a typical feature of Hodgkin and Reed-Sternberg cells in Hodgkin’s disease. Blood 94:1755–1760

    Article  CAS  PubMed  Google Scholar 

  68. Feuerborn A, Moritz C, Von Bonin F, Dobbelstein M, Trümper L, Sturzenhofecker B et al (2006) Dysfunctional p53 deletion mutants in cell lines derived from Hodgkin’s lymphoma. Leuk Lymphoma 47:1932–1940

    Article  CAS  PubMed  Google Scholar 

  69. Küpper M, Joos S, Von Bonin F, Daus H, Pfreundschuh M, Lichter P et al (2001) MDM2 gene amplification and lack of p53 point mutations in Hodgkin and Reed-Sternberg cells: results from single-cell polymerase chain reaction and molecular cytogenetic studies. Br J Haematol 112:768–775

    Article  PubMed  Google Scholar 

  70. Jardin F, Pujals A, Pelletier L, Bohers E, Camus V, Mareschal S et al (2016) Recurrent mutations of the exportin 1 gene (XPO1) and their impact on selective inhibitor of nuclear export compounds sensitivity in primary mediastinal B-cell lymphoma. Am J Hematol 91:923–930

    Article  CAS  PubMed  Google Scholar 

  71. Abdul Razak FR, Diepstra A, Visser L, van den Berg A (2016) CD58 mutations are common in Hodgkin lymphoma cell lines and loss of CD58 expression in tumor cells occurs in Hodgkin lymphoma patients who relapse. Genes Immun 17:363–366

    Article  CAS  PubMed  Google Scholar 

  72. Schneider M, Schneider S, Zühlke-Jenisch R, Klapper W, Sundström C, Hartmann S et al (2015) Alterations of the CD58 gene in classical Hodgkin lymphoma. Genes Chromosomes Cancer 54:638–645

    Article  CAS  PubMed  Google Scholar 

  73. Cabannes E, Khan G, Aillet F, Jarrett RF, Hay RT (1999) Mutations in the IκΒα gene in Hodgkin’s disease suggest a tumour suppressor role for IκΒα. Oncogene 18:3063–3070

    Article  CAS  PubMed  Google Scholar 

  74. Emmerich F, Meiser M, Hummel M, Demel G, Foss HD, Jundt F et al (1999) Overexpression of I kappa B alpha without inhibition of NF-kappaB activity and mutations in the I kappa B alpha gene in Reed-Sternberg cells. Blood 94:3129–3134

    Article  CAS  PubMed  Google Scholar 

  75. Jungnickel B, Staratschek-Jox A, Bräuninger A, Spieker T, Wolf J, Diehl V et al (2000) Clonal deleterious mutations in the IkBa gene in the malignant cells in Hodgkin’s disease. J Exp Med 191:395–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lake A, Shield LA, Cordano P, Chui DT, Osborne J, Crae S et al (2009) Mutations of NFKBIA, encoding IkappaBalpha, are a recurrent finding in classical Hodgkin lymphoma but are not a unifying feature of non-EBV-associated cases. Int J Cancer 125:1334–1342

    Article  CAS  PubMed  Google Scholar 

  77. Emmerich F, Theurich S, Hummel M, Haeffker A, Vry MS, Döhner K et al (2003) Inactivating I kappa B epsilon mutations in Hodgkin/Reed-Sternberg cells. J Pathol 201:413–420

    Article  CAS  PubMed  Google Scholar 

  78. Mansouri L, Noerenberg D, Young E, Mylonas E, Abdulla M, Frick M et al (2016) Frequent NFKBIE deletions are associated with poor outcome in primary mediastinal B-cell lymphoma. Blood 128:2666–2670

    Article  CAS  PubMed  Google Scholar 

  79. Otto C, Giefing M, Massow A, Vater I, Gesk S, Schlesner M et al (2012) Genetic lesions of the TRAF3 and MAP3K14 genes in classical Hodgkin lymphoma. Br J Haematol 157:702–708

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt A, Schmitz R, Giefing M, Martin-Subero JI, Gesk S, Vater I et al (2010) Rare occurrence of biallelic CYLD gene mutations in classical Hodgkin lymphoma. Genes Chromosomes Cancer 49:803–809

    CAS  PubMed  Google Scholar 

  81. Joos S, Granzow M, Holtgreve-Grez H, Siebert R, Harder L, Martin-Subero JI et al (2003) Hodgkin's lymphoma cell lines are characterized by frequent aberrations on chromosomes 2p and 9p including REL and JAK2. Int J Cancer 103:489–495

    Article  CAS  PubMed  Google Scholar 

  82. Joos S, Menz CK, Wrobel G, Siebert R, Gesk S, Ohl S et al (2002) Classical Hodgkin lymphoma is characterized by recurrent copy number gains of the short arm of chromosome 2. Blood 99:1381–1387

    Article  CAS  PubMed  Google Scholar 

  83. Martin-Subero JI, Gesk S, Harder L, Sonoki T, Tucker PW, Schlegelberger B et al (2002) Recurrent involvement of the REL and BCL11A loci in classical Hodgkin lymphoma. Blood 99:1474–1477

    Article  CAS  PubMed  Google Scholar 

  84. Barth TF, Martin-Subero JI, Joos S, Menz CK, Hasel C, Mechtersheimer G et al (2003) Gains of 2p involving the REL locus correlate with nuclear c-Rel protein accumulation in neoplastic cells of classical Hodgkin lymphoma. Blood 101:3681–3686

    Article  CAS  PubMed  Google Scholar 

  85. Steidl C, Telenius A, Shah SP, Farinha P, Barclay L, Boyle M et al (2010) Genome-wide copy number analysis of Hodgkin Reed-Sternberg cells identifies recurrent imbalances with correlations to treatment outcome. Blood 116:418–427

    Article  CAS  PubMed  Google Scholar 

  86. Martin-Subero JI, Wlodarska I, Bastard C, Picquenot JM, Höppner J, Giefing M et al (2006) Chromosomal rearrangements involving the BCL3 locus are recurrent in classical Hodgkin and peripheral T-cell lymphoma. Blood 108:401–402

    Article  CAS  PubMed  Google Scholar 

  87. Mathas S, Jöhrens K, Joos S, Lietz A, Hummel F, Janz M et al (2005) Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood 106:4287–4293

    Article  CAS  PubMed  Google Scholar 

  88. Kato M, Sanada M, Kato I, Sato Y, Takita J, Takeuchi K et al (2009) Frequent inactivation of A20 in B-cell lymphomas. Nature 459:712–716

    Article  CAS  PubMed  Google Scholar 

  89. Schmitz R, Hartmann S, Giefing M, Mechtersheimer G, Zuhlke-Jenisch R, Martin-Subero JI et al (2007) Inactivating mutations of TNFAIP3 (A20) indicate a tumor suppressor role for A20 in Hodgkin's lymphoma and primary mediastinal B cell lymphoma. Haeamtologica. Hematol J 92(Suppl. 5):41

    Google Scholar 

  90. Mosialos G, Birkenbach M, Yalamanchili R, VanArsdale T, Ware C, Kieff E (1995) The Epstein-Barr virus transforming protein LMP1 engages signaling proteins for the tumor necrosis factor receptor family. Cell 80:389–399

    Article  CAS  PubMed  Google Scholar 

  91. Uchida J, Yasui T, Takaoka-Shichijo Y, Muraoka M, Kulwichit W, Raab-Traub N et al (1999) Mimicry of CD40 signals by Epstein-Barr virus LMP1 in B lymphocyte responses. Science 286:300–303

    Article  CAS  PubMed  Google Scholar 

  92. Schumacher MA, Schmitz R, Brune V, Tiacci E, Döring C, Hansmann ML et al (2010) Mutations in the genes coding for the NF-kappaB regulating factors IkappaBalpha and A20 are uncommon in nodular lymphocyte-predominant Hodgkin’s lymphoma. Haematologica 95:153–157

    Article  CAS  PubMed  Google Scholar 

  93. Mottok A, Renné C, Willenbrock K, Hansmann ML, Bräuninger A (2007) Somatic hypermutation of SOCS1 in lymphocyte-predominant Hodgkin lymphoma is accompanied by high JAK2 expression and activation of STAT6. Blood 110:3387–3390

    Article  CAS  PubMed  Google Scholar 

  94. Weniger MA, Melzner I, Menz CK, Wegener S, Bucur AJ, Dorsch K et al (2006) Mutations of the tumor suppressor gene SOCS-1 in classical Hodgkin lymphoma are frequent and associated with nuclear phospho-STAT5 accumulation. Oncogene 25:2679–2684

    Article  CAS  PubMed  Google Scholar 

  95. Gunawardana J, Chan FC, Telenius A, Woolcock B, Kridel R, Tan KL et al (2014) Recurrent somatic mutations of PTPN1 in primary mediastinal B cell lymphoma and Hodgkin lymphoma. Nat Genet 46:329–335

    Article  CAS  PubMed  Google Scholar 

  96. Joos S, Küpper M, Ohl S, von Bonin F, Mechtersheimer G, Bentz M et al (2000) Genomic imbalances including amplification of the tyrosine kinase gene JAK2 in CD30+ Hodgkin cells. Cancer Res 60:549–552

    CAS  PubMed  Google Scholar 

  97. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E et al (2010) Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116:3268–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G et al (2010) Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 18:590–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Van Roosbroeck K, Cox L, Tousseyn T, Lahortiga I, Gielen O, Cauwelier B et al (2011) JAK2 rearrangements, including the novel SEC31A-JAK2 fusion, are recurrent in classical Hodgkin lymphoma. Blood 117:4056–4064

    Article  PubMed  CAS  Google Scholar 

  100. Hartmann S, Martin-Subero JI, Gesk S, Husken J, Giefing M, Nagel I et al (2008) Detection of genomic imbalances in microdissected Hodgkin and Reed-Sternberg cells of classical Hodgkin's lymphoma by array-based comparative genomic hybridization. Haematologica 93:1318–1326

    Article  CAS  PubMed  Google Scholar 

  101. Hartmann S, Schuhmacher B, Rausch T, Fuller L, Döring C, Weniger M et al (2016) Highly recurrent mutations of SGK1, DUSP2 and JUNB in nodular lymphocyte predominant Hodgkin lymphoma. Leukemia 30:844–853

    Article  CAS  PubMed  Google Scholar 

  102. Re D, Müschen M, Ahmadi T, Wickenhauser C, Staratschek-Jox A, Holtick U et al (2001) Oct-2 and Bob-1 deficiency in Hodgkin and Reed Sternberg cells. Cancer Res 61:2080–2084

    CAS  PubMed  Google Scholar 

  103. Stein H, Marafioti T, Foss HD, Laumen H, Hummel M, Anagnostopoulos I et al (2001) Down-regulation of BOB.1/OBF.1 and Oct2 in classical Hodgkin disease but not in lymphocyte predominant Hodgkin disease correlates with immunoglobulin transcription. Blood 97:496–501

    Article  CAS  PubMed  Google Scholar 

  104. Watanabe K, Yamashita Y, Nakayama A, Hasegawa Y, Kojima H, Nagasawa T et al (2000) Varied B-cell immunophenotypes of Hodgkin/Reed-Sternberg cells in classic Hodgkin’s disease. Histopathology 36:353–361

    Article  CAS  PubMed  Google Scholar 

  105. Schwering I, Bräuninger A, Klein U, Jungnickel B, Tinguely M, Diehl V et al (2003) Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 101:1505–1512

    Article  CAS  PubMed  Google Scholar 

  106. Carbone A, Gloghini A, Larocca LM, Antinori A, Falini B, Tirelli U et al (1999) Human immunodeficiency virus-associated Hodgkin’s disease derives from post-germinal center B cells. Blood 93:2319–2326

    CAS  PubMed  Google Scholar 

  107. Tiacci E, Döring C, Brune V, van Noesel CJ, Klapper W, Mechtersheimer G et al (2012) Analyzing primary Hodgkin and Reed-Sternberg cells to capture the molecular and cellular pathogenesis of classical Hodgkin lymphoma. Blood 120:4609–4620

    Article  CAS  PubMed  Google Scholar 

  108. Poppema S (1996) Immunology of Hodgkin’s disease. Baillieres Clin Haematol 9:447–457

    Article  CAS  PubMed  Google Scholar 

  109. Carbone A, Gloghini A, Gruss HJ, Pinto A (1995) CD40 ligand is constitutively expressed in a subset of T cell lymphomas and on the microenvironmental reactive T cells of follicular lymphomas and Hodgkin’s disease. Am J Pathol 147:912–922

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Torlakovic E, Tierens A, Dang HD, Delabie J (2001) The transcription factor PU.1, necessary for B-cell development is expressed in lymphocyte predominance, but not classical Hodgkin’s disease. Am J Pathol 159:1807–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bohle V, Döring C, Hansmann ML, Küppers R (2013) Role of early B-cell factor 1 (EBF1) in Hodgkin lymphoma. Leukemia 27:671–679

    Article  CAS  PubMed  Google Scholar 

  112. Overbeck BM, Martin-Subero JI, Ammerpohl O, Klapper W, Siebert R, Giefing M (2012) ETS1 encoding a transcription factor involved in B-cell differentiation is recurrently deleted and down-regulated in classical Hodgkin’s lymphoma. Haematologica 97:1612–1614

    Article  PubMed  PubMed Central  Google Scholar 

  113. Küppers R, Klein U, Schwering I, Distler V, Bräuninger A, Cattoretti G et al (2003) Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest 111:529–537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Mathas S, Janz M, Hummel F, Hummel M, Wollert-Wulf B, Lusatis S et al (2006) Intrinsic inhibition of transcription factor E2A by HLH proteins ABF-1 and Id2 mediates reprogramming of neoplastic B cells in Hodgkin lymphoma. Nat Immunol 7:207–215

    Article  CAS  PubMed  Google Scholar 

  115. Renné C, Martin-Subero JI, Eickernjager M, Hansmann ML, Küppers R, Siebert R et al (2006) Aberrant expression of ID2, a suppressor of B-cell-specific gene expression, in Hodgkin’s lymphoma. Am J Pathol 169:655–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Hacker C, Kirsch RD, Ju XS, Hieronymus T, Gust TC, Kuhl C et al (2003) Transcriptional profiling identifies Id2 function in dendritic cell development. Nat Immunol 4:380–386

    Article  CAS  PubMed  Google Scholar 

  117. Yokota Y, Mansouri A, Mori S, Sugawara S, Adachi S, Nishikawa S et al (1999) Development of peripheral lymphoid organs and natural killer cells depends on the helix-loop-helix inhibitor Id2. Nature 397:702–706

    Article  CAS  PubMed  Google Scholar 

  118. Jundt F, Acikgoz O, Kwon SH, Schwarzer R, Anagnostopoulos I, Wiesner B et al (2008) Aberrant expression of Notch1 interferes with the B-lymphoid phenotype of neoplastic B cells in classical Hodgkin lymphoma. Leukemia 22:1587–1594

    Article  CAS  PubMed  Google Scholar 

  119. Jundt F, Anagnostopoulos I, Förster R, Mathas S, Stein H, Dörken B (2002) Activated Notch 1 signaling promotes tumor cell proliferation and survival in Hodgkin and anaplastic large cell lymphoma. Blood 99:3398–3403

    Article  CAS  PubMed  Google Scholar 

  120. Köchert K, Ullrich K, Kreher S, Aster JC, Kitagawa M, Johrens K et al (2011) High-level expression of Mastermind-like 2 contributes to aberrant activation of the NOTCH signaling pathway in human lymphomas. Oncogene 30(15):1831–1840

    Article  PubMed  CAS  Google Scholar 

  121. Scheeren FA, Diehl SA, Smit LA, Beaumont T, Naspetti M, Bende RJ et al (2008) IL-21 is expressed in Hodgkin lymphoma and activates STAT5; evidence that activated STAT5 is required for Hodgkin lymphomagenesis. Blood 111:4706–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Stanelle J, Döring C, Hansmann ML, Küppers R (2010) Mechanisms of aberrant GATA3 expression in classical Hodgkin lymphoma and its consequences for the cytokine profile of Hodgkin and Reed/Sternberg cells. Blood 116:4202–4211

    Article  CAS  PubMed  Google Scholar 

  123. Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK et al (2005) Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol 350:631–640

    Article  CAS  PubMed  Google Scholar 

  124. Ushmorov A, Leithäuser F, Sakk O, Weinhausel A, Popov SW, Möller P et al (2006) Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood 107:2493–2500

    Article  CAS  PubMed  Google Scholar 

  125. Ammerpohl O, Haake A, Pellissery S, Giefing M, Richter J, Balint B et al (2012) Array-based DNA methylation analysis in classical Hodgkin lymphoma reveals new insights into the mechanisms underlying silencing of B cell-specific genes. Leukemia 26:185–188

    Article  CAS  PubMed  Google Scholar 

  126. Dukers DF, van Galen JC, Giroth C, Jansen P, Sewalt RG, Otte AP et al (2004) Unique polycomb gene expression pattern in Hodgkin's lymphoma and Hodgkin’s lymphoma-derived cell lines. Am J Pathol 164:873–881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Raaphorst FM, van Kemenade FJ, Blokzijl T, Fieret E, Hamer KM, Satijn DP et al (2000) Coexpression of BMI-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin’s disease. Am J Pathol 157:709–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sanchez-Beato M, Sanchez E, Garcia JF, Perez-Rosado A, Montoya MC, Fraga M et al (2004) Abnormal PcG protein expression in Hodgkin’s lymphoma. Relation with E2F6 and NFkappaB transcription factors. J Pathol 204:528–537

    Article  CAS  PubMed  Google Scholar 

  129. Schneider EM, Torlakovic E, Stuhler A, Diehl V, Tesch H, Giebel B (2004) The early transcription factor GATA-2 is expressed in classical Hodgkin’s lymphoma. J Pathol 204:538–545

    Article  CAS  PubMed  Google Scholar 

  130. Lamprecht B, Walter K, Kreher S, Kumar R, Hummel M, Lenze D et al (2010) Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 16:571–579

    Article  CAS  PubMed  Google Scholar 

  131. Yuki H, Ueno S, Tatetsu H, Niiro H, Iino T, Endo S et al (2013) PU.1 is a potent tumor suppressor in classical Hodgkin lymphoma cells. Blood 121:962–970

    Article  CAS  PubMed  Google Scholar 

  132. Guan H, Xie L, Wirth T, Ushmorov A (2016) Repression of TCF3/E2A contributes to Hodgkin lymphomagenesis. Oncotarget 7:36854–36864

    PubMed  PubMed Central  Google Scholar 

  133. Xie L, Ushmorov A, Leithäuser F, Guan H, Steidl C, Farbinger J et al (2012) FOXO1 is a tumor suppressor in classical Hodgkin lymphoma. Blood 119:3503–3511

    Article  CAS  PubMed  Google Scholar 

  134. Du J, Neuenschwander M, Yu Y, Dabritz JH, Neuendorff NR, Schleich K et al (2017) Pharmacological restoration and therapeutic targeting of the B-cell phenotype in classical Hodgkin lymphoma. Blood 129:71–81

    Article  CAS  PubMed  Google Scholar 

  135. Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W et al (1997) Constitutive nuclear factor-kappaB-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 100:2961–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Carbone A, Gloghini A, Gattei V, Aldinucci D, Degan M, De Paoli P et al (1995) Expression of functional CD40 antigen on Reed-Sternberg cells and Hodgkin’s disease cell lines. Blood 85:780–789

    Article  CAS  PubMed  Google Scholar 

  137. Chiu A, Xu W, He B, Dillon SR, Gross JA, Sievers E et al (2007) Hodgkin lymphoma cells express TACI and BCMA receptors and generate survival and proliferation signals in response to BAFF and APRIL. Blood 109:729–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Fiumara P, Snell V, Li Y, Mukhopadhyay A, Younes M, Gillenwater AM et al (2001) Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood 98:2784–2790

    Article  CAS  PubMed  Google Scholar 

  139. Molin D, Fischer M, Xiang Z, Larsson U, Harvima I, Venge P et al (2001) Mast cells express functional CD30 ligand and are the predominant CD30L-positive cells in Hodgkin’s disease. Br J Haematol 114:616–623

    Article  CAS  PubMed  Google Scholar 

  140. Schwab U, Stein H, Gerdes J, Lemke H, Kirchner H, Schaadt M et al (1982) Production of a monoclonal antibody specific for Hodgkin and Sternberg-Reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature 299:65–67

    Article  CAS  PubMed  Google Scholar 

  141. Hirsch B, Hummel M, Bentink S, Fouladi F, Spang R, Zollinger R et al (2008) CD30-induced signaling is absent in Hodgkin’s cells but present in anaplastic large cell lymphoma cells. Am J Pathol 172:510–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Horie R, Watanabe T, Morishita Y, Ito K, Ishida T, Kanegae Y et al (2002) Ligand-independent signaling by overexpressed CD30 drives NF-kappaB activation in Hodgkin-Reed-Sternberg cells. Oncogene 21:2493–2503

    Article  CAS  PubMed  Google Scholar 

  143. Kilger E, Kieser A, Baumann M, Hammerschmidt W (1998) Epstein-Barr virus-mediated B-cell proliferation is dependent upon latent membrane protein 1, which simulates an activated CD40 receptor. EMBO J 17:1700–1709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Baus D, Pfitzner E (2006) Specific function of STAT3, SOCS1, and SOCS3 in the regulation of proliferation and survival of classical Hodgkin lymphoma cells. Int J Cancer 118:1404–1413

    Article  CAS  PubMed  Google Scholar 

  145. Kube D, Holtick U, Vockerodt M, Ahmadi T, Behrmann I, Heinrich PC et al (2001) STAT3 is constitutively activated in Hodgkin cell lines. Blood 98:762–770

    Article  CAS  PubMed  Google Scholar 

  146. Skinnider BF, Elia AJ, Gascoyne RD, Patterson B, Trümper L, Kapp U et al (2002) Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 99:618–626

    Article  CAS  PubMed  Google Scholar 

  147. Kapp U, Yeh WC, Patterson B, Elia AJ, Kagi D, Ho A et al (1999) Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed-Sternberg cells. J Exp Med 189:1939–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Skinnider BF, Elia AJ, Gascoyne RD, Trumper LH, von Bonin F, Kapp U et al (2001) Interleukin 13 and interleukin 13 receptor are frequently expressed by Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood 97:250–255

    Article  CAS  PubMed  Google Scholar 

  149. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al (2002) Nuclear factor kappaB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transcription 5a activity. J Exp Med 196:605–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Lamprecht B, Kreher S, Anagnostopoulos I, Johrens K, Monteleone G, Jundt F et al (2008) Aberrant expression of the Th2 cytokine IL-21 in Hodgkin lymphoma cells regulates STAT3 signaling and attracts Treg cells via regulation of MIP-3{alpha}. Blood 112:3339–3347

    Article  CAS  PubMed  Google Scholar 

  151. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  CAS  PubMed  Google Scholar 

  152. Renné C, Willenbrock K, Küppers R, Hansmann M-L, Bräuninger A (2005) Autocrine and paracrine activated receptor tyrosine kinases in classical Hodgkin lymphoma. Blood 105:4051–4059

    Article  PubMed  CAS  Google Scholar 

  153. Teofili L, Di Febo AL, Pierconti F, Maggiano N, Bendandi M, Rutella S et al (2001) Expression of the c-met proto-oncogene and its ligand, hepatocyte growth factor, in Hodgkin disease. Blood 97:1063–1069

    Article  CAS  PubMed  Google Scholar 

  154. Renné C, Willenbrock K, Martin-Subero JI, Hinsch N, Döring C, Tiacci E et al (2007) High expression of several tyrosine kinases and activation of the PI3K/AKT pathway in mediastinal large B cell lymphoma reveals further similarities to Hodgkin lymphoma. Leukemia 21:780–787

    Article  PubMed  CAS  Google Scholar 

  155. Renné C, Hinsch N, Willenbrock K, Fuchs M, Klapper W, Engert A et al (2007) The aberrant coexpression of several receptor tyrosine kinases is largely restricted to EBV-negative cases of classical Hodgkin’s lymphoma. Int J Cancer 120:2504–2509

    Article  PubMed  CAS  Google Scholar 

  156. Renne C, Minner S, Küppers R, Hansmann ML, Bräuninger A (2008) Autocrine NGFbeta/TRKA signalling is an important survival factor for Hodgkin lymphoma derived cell lines. Leuk Res 32:163–167

    Article  CAS  PubMed  Google Scholar 

  157. Nagel S, Burek C, Venturini L, Scherr M, Quentmeier H, Meyer C et al (2007) Comprehensive analysis of homeobox genes in Hodgkin lymphoma cell lines identifies dysregulated expression of HOXB9 mediated via ERK5 signaling and BMI1. Blood 109:3015–3023

    Article  CAS  PubMed  Google Scholar 

  158. Zheng B, Fiumara P, Li YV, Georgakis G, Snell V, Younes M et al (2003) MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood 102:1019–1027

    Article  CAS  PubMed  Google Scholar 

  159. Mathas S, Hinz M, Anagnostopoulos I, Krappmann D, Lietz A, Jundt F et al (2002) Aberrantly expressed c-Jun and JunB are a hallmark of Hodgkin lymphoma cells, stimulate proliferation and synergize with NF-kappa B. EMBO J 21:4104–4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J et al (2007) The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci U S A 104:13134–13139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Watanabe M, Ogawa Y, Ito K, Higashihara M, Kadin ME, Abraham LJ et al (2003) AP-1 mediated relief of repressive activity of the CD30 promoter microsatellite in Hodgkin and Reed-Sternberg cells. Am J Pathol 163:633–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Lollies A, Hartmann S, Schneider M, Bracht T, Weiss AL, Arnolds J et al (2018) An oncogenic axis of STAT-mediated BATF3 upregulation causing MYC activity in classical Hodgkin lymphoma and anaplastic large cell lymphoma. Leukemia 32:92–101

    Article  CAS  PubMed  Google Scholar 

  163. Vrzalikova K, Ibrahim M, Vockerodt M, Perry T, Margielewska S, Lupino L et al (2018) S1PR1 drives a feedforward signalling loop to regulate BATF3 and the transcriptional programme of Hodgkin lymphoma cells. Leukemia 32:214–223

    Article  CAS  PubMed  Google Scholar 

  164. Dutton A, Reynolds GM, Dawson CW, Young LS, Murray PG (2005) Constitutive activation of phosphatidyl-inositide 3 kinase contributes to the survival of Hodgkin's lymphoma cells through a mechanism involving Akt kinase and mTOR. J Pathol 205:498–506

    Article  CAS  PubMed  Google Scholar 

  165. Georgakis GV, Li Y, Rassidakis GZ, Medeiros LJ, Mills GB, Younes A (2006) Inhibition of the phosphatidylinositol-3 kinase/Akt promotes G1 cell cycle arrest and apoptosis in Hodgkin lymphoma. Br J Haematol 132:503–511

    CAS  PubMed  Google Scholar 

  166. Dutton A, O'Neil JD, Milner AE, Reynolds GM, Starczynski J, Crocker J et al (2004) Expression of the cellular FLICE-inhibitory protein (c-FLIP) protects Hodgkin’s lymphoma cells from autonomous Fas-mediated death. Proc Natl Acad Sci U S A 101:6611–6616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Mathas S, Lietz A, Anagnostopoulos I, Hummel F, Wiesner B, Janz M et al (2004) c-FLIP mediates resistance of Hodgkin/Reed-Sternberg cells to death receptor-induced apoptosis. J Exp Med 199:1041–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Re D, Hofmann A, Wolf J, Diehl V, Staratschek-Jox A (2000) Cultivated H-RS cells are resistant to CD95L-mediated apoptosis despite expression of wild-type CD95. Exp Hematol 28:31–35

    Article  CAS  PubMed  Google Scholar 

  169. Chu WS, Aguilera NS, Wei MQ, Abbondanzo SL (1999) Antiapoptotic marker Bcl-X(L), expression on Reed-Sternberg cells of Hodgkin’s disease using a novel monoclonal marker, YTH-2H12. Hum Pathol 30:1065–1070

    Article  CAS  PubMed  Google Scholar 

  170. Kashkar H, Haefs C, Shin H, Hamilton-Dutoit SJ, Salvesen GS, Krönke M et al (2003) XIAP-mediated caspase inhibition in Hodgkin’s lymphoma-derived B cells. J Exp Med 198:341–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kashkar H, Seeger JM, Hombach A, Deggerich A, Yazdanpanah B, Utermohlen O et al (2006) XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cell attack. Blood 108:3434–3440

    Article  CAS  PubMed  Google Scholar 

  172. Sanchez-Beato M, Piris MA, Martinez-Montero JC, Garcia JF, Villuendas R, Garcia FJ et al (1996) MDM2 and p21WAF1/CIP1, wild-type p53-induced proteins, are regularly expressed by Sternberg-Reed cells in Hodgkin's disease. J Pathol 180:58–64

    Article  CAS  PubMed  Google Scholar 

  173. Drakos E, Thomaides A, Medeiros LJ, Li J, Leventaki V, Konopleva M et al (2007) Inhibition of p53-murine double minute 2 interaction by nutlin-3A stabilizes p53 and induces cell cycle arrest and apoptosis in Hodgkin lymphoma. Clin Cancer Res 13:3380–3387

    Article  CAS  PubMed  Google Scholar 

  174. Janz M, Stuhmer T, Vassilev LT, Bargou RC (2007) Pharmacologic activation of p53-dependent and p53-independent apoptotic pathways in Hodgkin/Reed-Sternberg cells. Leukemia 21:772–779

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Küppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rosenwald, A., Küppers, R. (2020). Pathology and Molecular Pathology of Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-32482-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32482-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32481-0

  • Online ISBN: 978-3-030-32482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics