Skip to main content

Targeting CD30 in Patients with Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

  • 977 Accesses

Abstract

The introduction of multi-agent chemotherapy for the treatment of Hodgkin lymphoma is one of the major breakthroughs in clinical oncology. Treatment with multi-agent chemotherapy and improved radiation methods has significantly improved the chance of curing these patients from less than 5% in 1963 to about 80% at present. However, there is still a substantial need to improve current treatment approaches particularly for elderly patients or those with relapsed and refractory disease. Cured patients unfortunately are at high risk for late side effects including second malignancies, cardiac toxicity, infertility, and fatigue. Thus, there is a clear need for new and safer drugs that are more selective in targeting the malignant Hodgkin and Reed-Sternberg (HRS) cells in this disease while sparing normal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonadonna G, Santoro A (1982) ABVD chemotherapy in the treatment of Hodgkin’s disease. Cancer Treat Rev 9:21–35

    Article  CAS  PubMed  Google Scholar 

  2. De Vita VT, Serpick A (1967) Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Proc Am Assoc Cancer Res 8:13

    Google Scholar 

  3. De Vita VT (1981) The consequences of the chemotherapy of Hodgkin’s disease: the 10th David a. Karnofsky memorial lecture. Cancer 47:1–13

    Article  Google Scholar 

  4. Josting A, Muller H, Borchmann P et al (2010) Dose intensity of chemotherapy in patients with relapsed Hodgkin’s lymphoma. J Clin Oncol 28:5074–5080

    Article  PubMed  Google Scholar 

  5. Kuruvilla J, Keating A, Crump M (2011) How I treat relapsed and refractory Hodgkin lymphoma. Blood 117:4208–4217

    Article  CAS  PubMed  Google Scholar 

  6. Moskowitz AJ, Perales MA, Kewalramani T et al (2009) Outcomes for patients who fail high dose chemoradiotherapy and autologous stem cell rescue for relapsed and primary refractory Hodgkin lymphoma. Br J Haematol 146:158–163

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ng AK, Bernardo MP, Weller E et al (2002) Long-term survival and competing causes of death in patients with early-stage Hodgkin’s disease treated at age 50 or younger. J Clin Oncol 20:2101–2108

    Article  PubMed  Google Scholar 

  8. Specht L (2003) Very long-term follow-up of the Danish National Hodgkin Study Group’s randomized trial of radiotherapy (RT) alone vs. combined modality treatment (CMT) for early stage Hodgkin lymphoma, with special reference to second tumors and overall survival. Blood 102:637A

    Google Scholar 

  9. van Leeuwen FE, Klokman WJ, Veer MB et al (2000) Long-term risk of second malignancy in survivors of Hodgkin’s disease treated during adolescence or young adulthood. J Clin Oncol 18:487–497

    Article  PubMed  Google Scholar 

  10. Engert A, Burrows F, Jung W et al (1990) Evaluation of ricin a chain-containing immunotoxins directed against the CD30 antigen as potential reagents for the treatment of Hodgkin’s disease. Cancer Res 50:84–88

    CAS  PubMed  Google Scholar 

  11. Engert A, Martin G, Pfreundschuh M et al (1990) Antitumor effects of ricin a chain immunotoxins prepared from intact antibodies and fab’ fragments on solid human Hodgkin’s disease tumors in mice. Cancer Res 50:2929–2935

    CAS  PubMed  Google Scholar 

  12. Falini B, Flenghi L, Fedeli L et al (1992) In vivo targeting of Hodgkin and reed-Sternberg cells of Hodgkin’s disease with monoclonal antibody Ber-H2 (CD30): immunohistological evidence. Br J Haematol 82:38–45

    Article  CAS  PubMed  Google Scholar 

  13. Falini B, Bolognesi A, Flenghi L et al (1992) Response of refractory Hodgkin’s disease to monoclonal anti-CD30 immunotoxin. Lancet 339:1195–1196

    Article  CAS  PubMed  Google Scholar 

  14. Schnell R, Staak O, Borchmann P et al (2002) A phase I study with an anti-CD30 ricin A-chain immunotoxin (Ki-4.dgA) in patients with refractory CD30+ Hodgkin’s and non-Hodgkin’s lymphoma. Clin Cancer Res 8:1779–1786

    CAS  PubMed  Google Scholar 

  15. Borchmann P, Schnell R, Fuss I et al (2002) Phase 1 trial of the novel bispecific molecule H22xKi-4 in patients with refractory Hodgkin lymphoma. Blood 100:3101–3107

    Article  CAS  PubMed  Google Scholar 

  16. Stein H, Mason DY, Gerdes J et al (1985) The expression of the Hodgkin’s disease associated antigen Ki-1 in reactive and neoplastic lymphoid tissue: evidence that reed-Sternberg cells and histiocytic malignancies are derived from activated lymphoid cells. Blood 66:848–858

    Article  CAS  PubMed  Google Scholar 

  17. Schwab U, Stein H, Gerdes J et al (1982) Production of a monoclonal antibody specific for Hodgkin and Sternberg-reed cells of Hodgkin’s disease and a subset of normal lymphoid cells. Nature 299:65–67

    Article  CAS  PubMed  Google Scholar 

  18. Hecht TT, Longo DL, Cossman J et al (1985) Production and characterization of a monoclonal antibody that binds reed-Sternberg cells. J Immunol 134:4231–4236

    CAS  PubMed  Google Scholar 

  19. Schwarting R, Gerdes J, Durkop H, Falini B, Pileri S, Stein H (1989) BER-H2: a new anti-Ki-1 (CD30) monoclonal antibody directed at a formol-resistant epitope. Blood 74:1678–1689

    Article  CAS  PubMed  Google Scholar 

  20. Durkop H, Latza U, Hummel M, Eitelbach F, Seed B, Stein H (1992) Molecular cloning and expression of a new member of the nerve growth factor receptor family that is characteristic for Hodgkin’s disease. Cell 68:421–427

    Article  CAS  PubMed  Google Scholar 

  21. Fonatsch C, Latza U, Durkop H, Rieder H, Stein H (1992) Assignment of the human CD30 (Ki-1) gene to 1p36. Genomics 14:825–826

    Article  CAS  PubMed  Google Scholar 

  22. Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB (1997) Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol 17:1535–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duckett CS, Thompson CB (1997) CD30-dependent degradation of TRAF2: implications for negative regulation of TRAF signaling and the control of cell survival. Genes Dev 11:2810–2821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mir SS, Richter BW, Duckett CS (2000) Differential effects of CD30 activation in anaplastic large cell lymphoma and Hodgkin disease cells. Blood 96:4307–4312

    Article  CAS  PubMed  Google Scholar 

  25. Smith CA, Gruss HJ, Davis T et al (1993) CD30 antigen, a marker for Hodgkin’s lymphoma, is a receptor whose ligand defines an emerging family of cytokines with homology to TNF. Cell 73:1349–1360

    Article  CAS  PubMed  Google Scholar 

  26. Younes A, Consoli U, Zhao S et al (1996) CD30 ligand is expressed on resting normal and malignant human B lymphocytes. Br J Haematol 93:569–571

    Article  CAS  PubMed  Google Scholar 

  27. Gruss HJ, Boiani N, Williams DE, Armitage RJ, Smith CA, Goodwin RG (1994) Pleiotropic effects of the CD30 ligand on CD30-expressing cells and lymphoma cell lines. Blood 83:2045–2056

    Article  CAS  PubMed  Google Scholar 

  28. Amakawa R, Hakem A, Kundig TM et al (1996) Impaired negative selection of T cells in Hodgkin’s disease antigen CD30-deficient mice. Cell 84:551–562

    Article  CAS  PubMed  Google Scholar 

  29. DeYoung AL, Duramad O, Winoto A (2000) The TNF receptor family member CD30 is not essential for negative selection. J Immunol 165:6170–6173

    Article  CAS  PubMed  Google Scholar 

  30. Bowen MA, Lee RK, Miragliotta G, Nam SY, Podack ER (1996) Structure and expression of murine CD30 and its role in cytokine production. J Immunol 156:442–449

    CAS  PubMed  Google Scholar 

  31. Kurts C, Carbone FR, Krummel MF, Koch KM, Miller JF, Heath WR (1999) Signalling through CD30 protects against autoimmune diabetes mediated by CD8 T cells. Nature 398:341–344

    Article  CAS  PubMed  Google Scholar 

  32. Gaspal FM, Kim MY, McConnell FM, Raykundalia C, Bekiaris V, Lane PJ (2005) Mice deficient in OX40 and CD30 signals lack memory antibody responses because of deficient CD4 T cell memory. J Immunol 174:3891–3896

    Article  CAS  PubMed  Google Scholar 

  33. Gerli R, Lunardi C, Vinante F, Bistoni O, Pizzolo G, Pitzalis C (2001) Role of CD30+ T cells in rheumatoid arthritis: a counter-regulatory paradigm for Th1-driven diseases. Trends Immunol 22:72–77

    Article  CAS  PubMed  Google Scholar 

  34. Sun X, Somada S, Shibata K et al (2008) A critical role of CD30 ligand/CD30 in controlling inflammatory bowel diseases in mice. Gastroenterology 134:447–458

    Article  CAS  PubMed  Google Scholar 

  35. Sun X, Yamada H, Shibata K et al (2010) CD30 ligand is a target for a novel biological therapy against colitis associated with Th17 responses. J Immunol 185:7671–7680

    Article  CAS  PubMed  Google Scholar 

  36. Blazar BR, Levy RB, Mak TW et al (2004) CD30/CD30 ligand (CD153) interaction regulates CD4+ T cell-mediated graft-versus-host disease. J Immunol 173:2933–2941

    Article  CAS  PubMed  Google Scholar 

  37. Dai Z, Li Q, Wang Y et al (2004) CD4+CD25+ regulatory T cells suppress allograft rejection mediated by memory CD8+ T cells via a CD30-dependent mechanism. J Clin Invest 113:310–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bartlett NL, Younes A, Carabasi MH et al (2008) A phase 1 multidose study of SGN-30 immunotherapy in patients with refractory or recurrent CD30+ hematologic malignancies. Blood 111:1848–1854

    Article  CAS  PubMed  Google Scholar 

  39. Ansell SM, Horwitz SM, Engert A et al (2007) Phase I/II study of an anti-CD30 monoclonal antibody (MDX-060) in Hodgkin’s lymphoma and anaplastic large-cell lymphoma. J Clin Oncol 25:2764–2769

    Article  CAS  PubMed  Google Scholar 

  40. Forero-Torres A, Leonard JP, Younes A et al (2009) A phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br J Haematol 146:171–179

    Article  CAS  PubMed  Google Scholar 

  41. Duvic M, Reddy SA, Pinter-Brown L et al (2009) A phase II study of SGN-30 in cutaneous anaplastic large cell lymphoma and related lymphoproliferative disorders. Clin Cancer Res 15:6217–6224

    Article  CAS  PubMed  Google Scholar 

  42. Cerveny CG, Law CL, McCormick RS et al (2005) Signaling via the anti-CD30 mAb SGN-30 sensitizes Hodgkin’s disease cells to conventional chemotherapeutics. Leukemia 19:1648–1655

    Article  CAS  PubMed  Google Scholar 

  43. Blum KA, Jung SH, Johnson JL et al (2010) Serious pulmonary toxicity in patients with Hodgkin’s lymphoma with SGN-30, gemcitabine, vinorelbine, and liposomal doxorubicin is associated with an FcgammaRIIIa-158 V/F polymorphism. Ann Oncol 21:2246–2254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lawrence CE, Hammond P, Zalevsky J et al (2007) XmAbTM2513, an fc engineered humanized anti-CD30 monoclonal antibody, has potent in vitro and in vivo activities, and has the potential for treating hematologic malignancies. Blood (ASH Annual Meeting Abstracts) 110:2340

    Google Scholar 

  45. Blum KA, Smith M, Fung H et al (2009) Phase I study of an anti-CD30 fc engineered humanized monoclonal antibody in Hodgkin lymphoma (HL) or anaplastic large cell lymphoma (ALCL) patients: safety, pharmacokinetics (PK), immunogenicity, and efficacy. ASCO Annu Meet (Abstr) 27:8531

    Google Scholar 

  46. Hartmann F, Renner C, Jung W et al (2001) Anti-CD16/CD30 bispecific antibody treatment for Hodgkin’s disease: role of infusion schedule and costimulation with cytokines. Clin Cancer Res 7:1873–1881

    CAS  PubMed  Google Scholar 

  47. Zhukovsky E, Achim R, von Tesckow B et al (2013) A phase I study of an anti-CD30 x anti-CD16A bispecific Tandab antibody, AFM13, in patients with relapsed or refractory Hodgkin lymphoma. Blood (ASH Annual Meeting Abstracts) 122:5116

    Google Scholar 

  48. Schnell R, Dietlein M, Staak JO et al (2005) Treatment of refractory Hodgkin’s lymphoma patients with an iodine-131-labeled murine anti-CD30 monoclonal antibody. J Clin Oncol 23:4669–4678

    Article  CAS  PubMed  Google Scholar 

  49. Hombach A et al (1998) An anti-CD30 chimeric receptor that mediates CD3-zeta-independent T-cell activation against Hodgkin’s lymphoma cells in the presence of soluble CD30. Cancer Res 58:1116–1119

    CAS  PubMed  Google Scholar 

  50. Hombach A et al (1999) Characterization of a chimeric T-cell receptor with specificity for the Hodgkin’s lymphoma-associated CD30 antigen. J Immunother 22:473–480, 473,475,477,479

    Article  CAS  PubMed  Google Scholar 

  51. Savoldo B et al (2007) Epstein Barr virus specific cytotoxic T lymphocytes expressing the anti-CD30ζ artificial chimeric T-cell receptor for immunotherapy of Hodgkin disease. Blood 110:2620–2630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Di Stasi A et al (2009) T lymphocytes coexpressing CCR4 and a chimeric antigen receptor targeting CD30 have improved homing and antitumor activity in a Hodgkin tumor model. Blood 113:6392–6402

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ramos CA, Heslop HE, Brenner MK (2016) CAR-T cell therapy for lymphoma. Annu Rev Med 67:165–183

    Article  CAS  PubMed  Google Scholar 

  54. Ramos CA et al (2015) Chimeric T cells for therapy of CD30+ Hodgkin and non-Hodgkin lymphomas. Blood 126:185

    Article  Google Scholar 

  55. Wang C et al (2017) Autologous T cells expressing CD30 chimeric antigen receptors for relapsed or refractory Hodgkin’s lymphoma: an open-label phase I trial. Clin Cancer Res 23:1156–1166

    Article  CAS  PubMed  Google Scholar 

  56. Brudno JN, Kochenderfer JF (2018) Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol 15:31–46

    Article  CAS  PubMed  Google Scholar 

  57. Oki Y, Younes A (2012) Brentuximab vedotin in systemic T-cell lymphoma. Expert Opin Biol Ther 12:623–632

    Article  CAS  PubMed  Google Scholar 

  58. Katz J, Janik JE, Younes A (2011) Brentuximab vedotin (SGN-35). Clin Cancer Res 17:6428–6436

    Article  CAS  PubMed  Google Scholar 

  59. Francisco JA, Cerveny CG, Meyer DL et al (2003) cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood 102:1458–1465

    Article  CAS  PubMed  Google Scholar 

  60. Younes A, Bartlett NL, Leonard JP, Kennedy DA, Lynch CM, Sievers EL et al (2010) Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N Engl J Med 363(19):1812–1821

    Article  CAS  PubMed  Google Scholar 

  61. Fanale MA, Forero-Torres A, Rosenblatt JD, Advani RH, Franklin AR, Kennedy DA et al (2012) A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin Cancer Res 18(1):248–255

    Article  CAS  PubMed  Google Scholar 

  62. Younes A, Gopal AK, Smith SE et al (2012) Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J Clin Oncol 30:2183–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen R et al (2016) Five-year survival and durability results of brentuximab vedotin in patients with relapsed or refractory Hodgkin lymphoma. Blood 128(12):1562–1566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. von Geldern G, Pardo CA, Calabresi PA, Newsome SD (2012) PML-IRIS in a patient treated with brentuximab. Neurology 79:2075–2077

    Article  Google Scholar 

  65. Younes A, Connors JM, Park SI et al (2013) Brentuximab vedotin combined with ABVD or AVD for patients with newly diagnosed Hodgkin’s lymphoma: a phase 1, open-label, dose-escalation study. Lancet Oncol 14:1348–1356

    Article  CAS  PubMed  Google Scholar 

  66. Kumar A, Burger IA, Zhang Z et al (2016) Definition of bulky disease in early stage Hodgkin lymphoma in computed tomography era: prognostic significance of measurements in the coronal and transverse planes. Haematologica 101(10):1237–1243

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kumar A, Casulo C, Yahalom J et al (2016) Brentuximab vedotin and AVD followed by involved-site radiotherapy in early stage, unfavorable risk Hodgkin lymphoma. Blood 128(11):1458–1464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Connors JM, Jurczak W, Straus DJ et al (2018) ECHELON-1 study group. Brentuximab vedotin with chemotherapy for stage III or IV Hodgkin’s lymphoma. N Engl J Med 378(4):331–344

    Article  CAS  PubMed  Google Scholar 

  69. Eichenauer DA, Plutschow A, Kreissl S et al (2017) Incorporation of brentuximab vedotin into first-line treatment of advanced classical Hodgkin’s lymphoma: final analysis of a phase 2 randomised trial by the German Hodgkin study group. Lancet Oncol 18(12):1680–1687

    Article  CAS  PubMed  Google Scholar 

  70. Evens AM, Advani RH, Helenowski IB et al (2018) Multicenter phase II study of sequential brentuximab vedotin and doxorubicin, vinblastine, and dacarbazine chemotherapy for older patients with untreated classical Hodgkin lymphoma. J Clin Oncol 36:3015

    Article  CAS  PubMed  Google Scholar 

  71. Forero-Torres A, Holkova B, Goldschmidt J et al (2015) Phase 2 study of frontline brentuximab vedotin monotherapy in Hodgkin lymphoma patients aged 60 years and older. Blood 126(26):2798–2804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Friedberg JW, Forero-Torres A, Bordoni RE et al (2017) Frontline brentuximab vedotin in combination with dacarbazine or bendamustine in patients aged ≥60 years with HL. Blood 130(26):2829–2837

    Article  CAS  PubMed  Google Scholar 

  73. Moskowitz AJ, Schöder H, Yahalom J et al (2015) PET-adapted sequential salvage therapy with brentuximab vedotin followed by augmented ifosamide, carboplatin, and etoposide for patients with relapsed and refractory Hodgkin’s lymphoma: a non-randomised, open-label, single-Centre, phase 2 study. Lancet Oncol 16(3):284–292

    Article  CAS  PubMed  Google Scholar 

  74. Chen R, Palmer JM, Martin P et al (2015) Results of a multicenter phase II trial of brentuximab vedotin as second-line therapy before autologous transplantation in relapsed/refractory Hodgkin lymphoma. Biol Blood Marrow Transplant 21(12):2136–2140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Cassaday RD, Fromm J, Cowan AJ et al (2016) Safety and activity of brentuximab vedotin (BV) plus ifosfamide, carboplatin, and etoposide (ICE) for relapsed/refractory (Rel/ref) classical Hodgkin lymphoma (cHL): initial results of a phase I/II trial. Blood 128(22):1834

    Article  Google Scholar 

  76. Hagenbeek A, Zijlstra J, Lugtenburg P et al (2016) Transplant BRaVE: combining brentuximab vedotin with DHAP as salvage treatment in relapsed/refractory Hodgkin’s lymphoma. A phase 1 dose-escalation study. Haematologica 101(s5):44

    Google Scholar 

  77. Garcia-Sanz R, Sureda A, Gonzalez AP et al (2016) Brentuximab vedotin plus ESHAP (BRESHAP) is a highly effective combination for inducing remission in refractory and relapsed Hodgkin lymphoma patients prior to autologous stem cell transplant: a trial of the Spanish Group of Lymphoma and Bone Marrow Transplantation (GELTAMO). Blood 128(22):1109

    Article  Google Scholar 

  78. LaCasce AS, Bociek RG, Sawas A et al (2018) Brentuximab vedotin plus bendamustine: a highly active first salvage regimen for relapsed or refractory Hodgkin lymphoma. Blood 132(1):40–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. O’Connor OA, Lue JK, Sawas A et al (2018) Brentuximab vedotin plus bendamustine in relapsed or refractory Hodgkin’s lymphoma: an international, multicentre, single-arm, phase 1-2 trial. Lancet Oncol 19(2):257–266

    Article  PubMed  Google Scholar 

  80. Herrera AF, Moskowitz AJ, Bartlett NL et al (2018) Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. Blood 131(11):1183–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Moskowitz CM, Nademanee A, Masszi T et al (2015) Brentuximab vedotin as consolidation therapy after autologous stem-cell transplantation in patients with Hodgkin’s lymphoma at risk of relapse or progression (AETHERA): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. Lancet 385(9980):1853–1862

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, A., Pileri, S., Younes, A., Engert, A. (2020). Targeting CD30 in Patients with Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-32482-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32482-7_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32481-0

  • Online ISBN: 978-3-030-32482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics