Skip to main content

Optimizing Decision Making in Hodgkin Lymphoma

  • Chapter
  • First Online:
Hodgkin Lymphoma

Part of the book series: Hematologic Malignancies ((HEMATOLOGIC))

Abstract

Given the success of frontline treatments and the ability to salvage the majority of Hodgkin lymphoma (HL) patients after disease progression or recurrence, the short-term overall survival of HL is high. However, this survival comes at a cost to patients in the form of late effects, which can alter both the length and quality of survivorship. To reduce downstream late-effect risk while preserving excellent disease control, modifications have been made in frontline therapy, including changes in indications for radiation, reduction in radiation dose and field among those receiving treatment, risk stratification to determine need for either dose reduction or dose escalation to optimize outcomes, and incorporation of novel agents, initially in the salvage setting and more recently in frontline therapy.

To guide patients and their families, alongside their providers, we describe the process of developing robust and nimble decision models to enhance and optimize the difficult decisions that affect acute and long-term outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Giulino-Roth L et al (2015) Current approaches in the management of low risk Hodgkin lymphoma in children and adolescents. Br J Haematol 169(5):647–660

    Article  PubMed  Google Scholar 

  2. Armitage JO (2010) Early-stage Hodgkin’s lymphoma. N Engl J Med 363(7):653–662

    Article  CAS  PubMed  Google Scholar 

  3. Evens AM, Hutchings M, Diehl V (2008) Treatment of Hodgkin lymphoma: the past, present, and future. Nat Clin Pract Oncol 5(9):543–556

    CAS  PubMed  Google Scholar 

  4. Meyer RM et al (2005) Randomized comparison of ABVD chemotherapy with a strategy that includes radiation therapy in patients with limited-stage Hodgkin’s lymphoma: National Cancer Institute of Canada Clinical Trials Group and the Eastern Cooperative Oncology Group. J Clin Oncol 23(21):4634–4642

    Article  CAS  PubMed  Google Scholar 

  5. Meyer RM et al (2012) ABVD alone versus radiation-based therapy in limited-stage Hodgkin’s lymphoma. N Engl J Med 366(5):399–408

    Article  CAS  PubMed  Google Scholar 

  6. Radford J et al (2015) Results of a trial of PET-directed therapy for early-stage Hodgkin’s lymphoma. N Engl J Med 372(17):1598–1607

    Article  CAS  PubMed  Google Scholar 

  7. Percival ME, Hoppe RT, Advani RH (2014) Bulky mediastinal classical Hodgkin lymphoma in young women. Oncology (Williston Park) 28(3):253-6–258-60. C3

    Google Scholar 

  8. Crump M et al (2015) Evidence-based focused review of the role of radiation therapy in the treatment of early-stage Hodgkin lymphoma. Blood 125(11):1708–1716

    Article  CAS  PubMed  Google Scholar 

  9. Hay AE et al (2013) An individual patient-data comparison of combined modality therapy and ABVD alone for patients with limited-stage Hodgkin lymphoma. Ann Oncol 24(12):3065–3069

    Article  CAS  PubMed  Google Scholar 

  10. Wolden SL et al (2012) Long-term results of CCG 5942: a randomized comparison of chemotherapy with and without radiotherapy for children with Hodgkin’s lymphoma—a report from the Children’s Oncology Group. J Clin Oncol 30(26):3174–3180

    Google Scholar 

  11. Nachman JB et al (2002) Randomized comparison of low-dose involved-field radiotherapy and no radiotherapy for children with Hodgkin’s disease who achieve a complete response to chemotherapy. J Clin Oncol 20(18):3765–3771

    Article  PubMed  Google Scholar 

  12. Straus DJ et al (2004) Results of a prospective randomized clinical trial of doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD) followed by radiation therapy (RT) versus ABVD alone for stages I, II, and IIIA nonbulky Hodgkin disease. Blood 104(12):3483–3489

    Article  CAS  PubMed  Google Scholar 

  13. Laskar S et al (2004) Consolidation radiation after complete remission in Hodgkin’s disease following six cycles of doxorubicin, bleomycin, vinblastine, and dacarbazine chemotherapy: is there a need? J Clin Oncol 22(1):62–68

    Article  CAS  PubMed  Google Scholar 

  14. Raemaekers JM et al (2014) Omitting radiotherapy in early positron emission tomography-negative stage I/II Hodgkin lymphoma is associated with an increased risk of early relapse: Clinical results of the preplanned interim analysis of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 32(12):1188–1194

    Article  PubMed  Google Scholar 

  15. Andre MP et al (2017) Early positron emission tomography response-adapted treatment in stage I and II Hodgkin lymphoma: final results of the randomized EORTC/LYSA/FIL H10 trial. J Clin Oncol 35(16):1786–1794. https://doi.org/10.1200/JCO.2016.68.6394

    Article  CAS  PubMed  Google Scholar 

  16. Evens AM, Kostakoglu L (2014) The role of FDG-PET in defining prognosis of Hodgkin lymphoma for early-stage disease. Blood 124(23):3356–3364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Olszewski AJ, Shrestha R, Castillo JJ (2015) Treatment selection and outcomes in early-stage classical Hodgkin lymphoma: analysis of the National Cancer Data Base. J Clin Oncol 33(6):625–633

    Article  PubMed  Google Scholar 

  18. Available from https://seer.cancer.gov/csr/1975_2015/.

  19. Schaapveld M et al (2015) Second cancer risk up to 40 after treatment for Hodgkin’s lymphoma. N Engl J Med 373(26):2499–2511

    Article  CAS  PubMed  Google Scholar 

  20. Aleman BM et al (2007) Late cardiotoxicity after treatment for Hodgkin lymphoma. Blood 109(5):1878–1886

    CAS  PubMed  Google Scholar 

  21. van Leeuwen FE, Ng AK (2016) Long-term risk of second malignancy and cardiovascular disease after Hodgkin lymphoma treatment. Hematology Am Soc Hematol Educ Program 2016(1):323–330

    Article  PubMed  PubMed Central  Google Scholar 

  22. Hanly P, Soerjomataram I, Sharp L (2015) Measuring the societal burden of cancer: the cost of lost productivity due to premature cancer-related mortality in Europe. Int J Cancer 136(4):E136–E145

    Article  CAS  PubMed  Google Scholar 

  23. Bradley CJ et al (2008) Productivity costs of cancer mortality in the United States: 2000–2020. J Natl Cancer Inst 100(24):1763–1770

    Article  PubMed  PubMed Central  Google Scholar 

  24. Linendoll N et al (2016) Health-related quality of life in Hodgkin lymphoma: a systematic review. Health Qual Life Outcomes 14(1):114

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hodgson DC et al (2007) Long-term solid cancer risk among 5-year survivors of Hodgkin’s lymphoma. J Clin Oncol 25(12):1489–1497

    Article  PubMed  Google Scholar 

  26. Myrehaug S et al (2008) Cardiac morbidity following modern treatment for Hodgkin lymphoma: supra-additive cardiotoxicity of doxorubicin and radiation therapy. Leuk Lymphoma 49(8):1486–1493

    Article  CAS  PubMed  Google Scholar 

  27. Myrehaug S et al (2010) A population-based study of cardiac morbidity among Hodgkin lymphoma patients with preexisting heart disease. Blood 116(13):2237–2240

    Article  CAS  PubMed  Google Scholar 

  28. Castellino SM et al (2011) Morbidity and mortality in long-term survivors of Hodgkin lymphoma: a report from the Childhood Cancer Survivor Study. Blood 117(6):1806–1816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Travis LB et al (2012) Second malignant neoplasms and cardiovascular disease following radiotherapy. J Natl Cancer Inst 104(5):357–370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Diefenbach CS et al (2017) Hodgkin lymphoma: current status and clinical trial recommendations. J Natl Cancer Inst 109:4

    Article  Google Scholar 

  31. Straus DJ et al (2018) CALGB 50604: risk-adapted treatment of nonbulky early-stage Hodgkin lymphoma based on interim PET. Blood 132(10):1013–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson P et al (2016) Adapted treatment guided by interim PET-CT scan in advanced Hodgkin’s lymphoma. N Engl J Med 374(25):2419–2429

    Article  PubMed  PubMed Central  Google Scholar 

  33. Coyle M, Kostakoglu L, Evens AM (2016) The evolving role of response-adapted PET imaging in Hodgkin lymphoma. Ther Adv Hematol 7(2):108–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. von Tresckow B et al (2012) Dose-intensification in early unfavorable Hodgkin’s lymphoma: final analysis of the German Hodgkin Study Group HD14 trial. J Clin Oncol 30(9):907–913

    Article  Google Scholar 

  35. Engert A et al (2010) Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N Engl J Med 363(7):640–652

    Article  CAS  PubMed  Google Scholar 

  36. Keller FG et al (2018) Results of the AHOD0431 trial of response adapted therapy and a salvage strategy for limited stage, classical Hodgkin lymphoma: a report from the Children’s Oncology Group. Cancer 124(15):3210–3219

    Article  CAS  PubMed  Google Scholar 

  37. Hasenclever D, Diehl V (1998) A prognostic score for advanced Hodgkin’s disease. International Prognostic Factors Project on Advanced Hodgkin’s Disease. N Engl J Med 339(21):1506–1514

    Article  CAS  PubMed  Google Scholar 

  38. Moccia AA et al (2012) International Prognostic Score in advanced-stage Hodgkin’s lymphoma: altered utility in the modern era. J Clin Oncol 30(27):3383–3388

    Article  PubMed  Google Scholar 

  39. Schwartz CL et al (2017) Childhood Hodgkin International Prognostic Score (CHIPS) Predicts event-free survival in Hodgkin lymphoma: a report from the Children’s Oncology Group. Pediatr Blood Cancer 64:4

    Article  Google Scholar 

  40. Aberle DR et al (2011) Reduced lung-cancer mortality with low-dose computed tomographic screening. N Engl J Med 365(5):395–409

    Article  PubMed  Google Scholar 

  41. Black WC et al (2014) Cost-effectiveness of CT screening in the National lung screening trial. N Engl J Med 371(19):1793–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Neumann PJ, Cohen JT, Weinstein MC (2014) Updating cost-effectiveness—the curious resilience of the $50,000-per-QALY threshold. N Engl J Med 371(9):796–797

    Google Scholar 

  43. Kovalchik SA et al (2013) Targeting of low-dose CT screening according to the risk of lung-cancer death. N Engl J Med 369(3):245–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kumar V et al (2018) Risk-targeted lung cancer screening: a cost-effectiveness analysis. Ann Intern Med 168(3):161–169

    Article  PubMed  PubMed Central  Google Scholar 

  45. Biccler J et al (2018) Simplicity at the cost of predictive accuracy in diffuse large B-cell lymphoma: a critical assessment of the R-IPI, IPI, and NCCN-IPI. Cancer Med 7(1):114–122

    Article  PubMed  Google Scholar 

  46. Parsons SK et al (2018) Early-stage Hodgkin lymphoma in the modern era: simulation modelling to delineate long-term patient outcomes. Br J Haematol 182(2):212–221

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan K. Parsons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parsons, S.K., Cohen, J.T., Evens, A.M. (2020). Optimizing Decision Making in Hodgkin Lymphoma. In: Engert, A., Younes, A. (eds) Hodgkin Lymphoma. Hematologic Malignancies. Springer, Cham. https://doi.org/10.1007/978-3-030-32482-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32482-7_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32481-0

  • Online ISBN: 978-3-030-32482-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics