Skip to main content

Operator Functional State: Measure It with Attention Intensity and Selectivity, Explain It with Cognitive Control

  • Conference paper
  • First Online:
Human Mental Workload: Models and Applications (H-WORKLOAD 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1107))

Abstract

To improve the safety and the performance of operators involved in risky and demanding missions, human-machine cooperation should be dynamically adapted, in terms of dialogue or function allocation. To support this reconfigurable cooperation, a crucial point is to assess online the operator’s ability to keep performing the mission, to anticipate and predict potential future performance impairments, as well as to be able to activate appropriate countermeasures in time. Thus, the paper explores the concept of Operator Functional State (OFS) developed by Hockey in 2003, by articulating it with underlying cognitive and attentional states, as well as with the notion of cognitive control modes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Veltman, J.A., Gaillard, A.W.K.: Physiological indices of workload in a simulated flight task. Biol. Psychol. 42(3), 323–342 (1996)

    Article  Google Scholar 

  2. Lassalle, J., et al.: COmmunication and WORKload analyses to study the COllective WORK of fighter pilots: the COWORK2 method. Cogn. Technol. Work 19(2–3), 477–491 (2017)

    Article  Google Scholar 

  3. Duncan, C.J.: Selective attention and the organization of visual information. J. Exper. Psychol. Gen. 113(4), 501 (1984)

    Article  Google Scholar 

  4. Hang, D.: Mission control of multiple unmanned aerial vehicles: a workload analysis. Hum. Factors 47(3), 479–487 (2005)

    Article  Google Scholar 

  5. Cummings, M.L., Bruni, S., Mercier, S., Mitchell, P.J.: Automation architecture for single operator, multiple UAV command and control. Int. C2 J. 1(2), 1–24 (2007)

    Google Scholar 

  6. Pomranky, R.A., Wojciechowski, J.Q.: Determination of mental workload during operation of multiple unmanned systems. Report No. ARL-TR-4309. Army Research Lab Abeerden (2007)

    Google Scholar 

  7. Kostenko, A., Rauffet, P., Chauvin, C., Coppin, G.: A dynamic closed-looped and multidimensional model for mental workload evaluation. IFAC-PapersOnLine 49(19), 549–554 (2016)

    Article  Google Scholar 

  8. Wickens, C., Dixon, S., Goh, J., Hammer, B.: Pilot dependence on imperfect diagnostic automation in simulated UAV flights: an attentional visual scanning analysis. In: 13th International Symposium on Aviation Psychology, Dayton, OH (2005)

    Google Scholar 

  9. Kostenko, A.: Multidimensional and dynamic evaluation of the control of the situation by the operator: creation of a real-time mental load indicator for drone supervision activity. Thesis dissertation. Université Bretagne Sud, Lorient (2017)

    Google Scholar 

  10. Hockey, G.R.J.: Operator functional state: the assessment and prediction of human performance degradation in complex tasks, vol. 355. IOS Press (2003)

    Google Scholar 

  11. Zhang, J., Yin, Z., Wang, R.: Recognition of mental workload levels under complex human–machine collaboration by using physiological features and adaptive support vector machines. IEEE Trans. Hum.-Mach. Syst. 45(2), 200–214 (2015)

    Article  Google Scholar 

  12. Yin, Z., Zhang, J.: Operator functional state classification using least-square support vector machine based recursive feature elimination technique. Comput. Methods Programs Biomed. 113(1), 101–115 (2014)

    Article  Google Scholar 

  13. Hollnagel, E.: Context, cognition and control. In: Waern, Y. (ed.) Co-operative Process Management: Cognition and Information Technology, pp. 27–52. Taylor & Francis, London (2003)

    Google Scholar 

  14. Parent, M., Gagnon, J.F., Falk, T.H., Tremblay, S.: Modeling the operator functional state for emergency response management. In: ISCRAM (2016)

    Google Scholar 

  15. Rauffet, P., Lassalle, J., Leroy, B., Coppin, G., Chauvin, C.: The TAPAS project: facilitating cooperation in hybrid combat air patrols including autonomous UCAVs. Procedia Manuf. 3, 974–981 (2015)

    Article  Google Scholar 

  16. Yang, S., Zhang, J.: An adaptive human–machine control system based on multiple fuzzy predictive models of operator functional state. Biomed. Signal Process. Control 8(3), 302–310 (2013)

    Article  Google Scholar 

  17. Schulte, A., Donath, D., Honecker, F.: Human-system interaction analysis for military pilot activity and mental workload determination. In: 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1375–1380 (2015)

    Google Scholar 

  18. Van Zomeren, A.H., Brouwer, W.H.: Clinical Neuropsychology of Attention. Oxford University Press, New York (1994)

    Google Scholar 

  19. Sturm, W., Willmes, K.: On the functional neuroanatomy of intrinsic and phasic alertness. Neuroimage 14, 76–84 (2001)

    Article  Google Scholar 

  20. Posner, M.I.: Measuring alertness. Annal. NY Acad. Sci. 1129, 193–199 (2008)

    Article  Google Scholar 

  21. Valdez, P., Ramírez, C., García, A., Talamantes, J., Armijo, P., Borrani, J.: Circadian rhythms in components of attention. Biol. Rhythm Res. 36, 57–65 (2005)

    Article  Google Scholar 

  22. Rubin, O., Meiran, N.: On the origins of the task mixing cost in the cuing task-switching paradigm. J. Exp. Psychol. Learn. Memory Cogn. 31, 1477 (2005)

    Article  Google Scholar 

  23. Matthews, G., Desmond, P.A.: Task-induced fatigue states and simulated driving performance. Q. J. Exper. Psychol. Sect. A 55(2), 659–686 (2002)

    Article  Google Scholar 

  24. Mulder, G.: The concept and measurement of mental effort. In: Hockey, G.R.J., Gaillard, A.W.K., Coles, M.G.H. (eds.) Energetics and Human Information Processing, pp. 175–198. Springer, Dordrecht (1986). https://doi.org/10.1007/978-94-009-4448-0_12

    Chapter  Google Scholar 

  25. Brown, I.D.: Driver fatigue. Hum. Factors 36, 298 (1994)

    Article  Google Scholar 

  26. Desmond, P.A., Hancock, P.A.: Active and passive fatigue states. In: Hancock, P.A., Desmond, P.A. (eds.) Human Factors in Transportation. Stress, Workload, and Fatigue, pp. 455–465. Lawrence Erlbaum Associates Publishers, Mahwah (2001)

    Google Scholar 

  27. Gimeno, T.P., Cerezuela, P.G., Montanes, M.C.: On the concept and measurement of driver drowsiness, fatigue and inattention: implications for countermeasures. Int. J. Veh. Des. 42(1–2), 67–86 (2006)

    Article  Google Scholar 

  28. Zhao, C., Zhao, M., Liu, J., Zheng, C.: Electroencephalogram and electrocardiograph assessment of mental fatigue in a driving simulator. Accid. Anal. Prev. 45, 83–90 (2012)

    Article  Google Scholar 

  29. Lavie, N., Hirst, A., De Fockert, J.W., Viding, E.: Load theory of selective attention and cognitive control. J. Exper. Psychol. Gen. 133(3), 339 (2004)

    Article  Google Scholar 

  30. Bardy, B.G.: Le paradigme de la double tâche. Sci. Motricité 15, 31–39 (1991)

    Google Scholar 

  31. Dehais, F., Fabre, E.F., Roy, R.N.: Cockpit intelligent et interfaces cerveau-machine passives. In: Digital Intelligence (2016)

    Google Scholar 

  32. De Waard, D.: The Measurement of Drivers’ Mental Workload. Groningen University, Traffic Research Center, Netherlands (1996)

    Google Scholar 

  33. Kahneman, D.: Attention and Effort, vol. 1063. Prentice-Hall, Englewood Cliffs (1973)

    Google Scholar 

  34. Parasuraman, R.: Neuroergonomics: Research and practice. Theor. Issues Ergon. Sci. 4(1–2), 5–20 (2003)

    Article  Google Scholar 

  35. Strait, M., Scheutz, M.: What we can and cannot (yet) do with functional near infrared spectroscopy. Front. Neurosci. 8, 117 (2014)

    Article  Google Scholar 

  36. Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with EEG+ fNIRS. Front. Hum. Neurosci. 11, 359 (2017)

    Article  Google Scholar 

  37. Verdière, K.J., Roy, R.N., Dehais, F.: Detecting pilot’s engagement using fNIRS connectivity features in an automated vs. manual landing scenario. Front. Hum. Neurosci. 12, 6 (2018)

    Google Scholar 

  38. Leplat, J.: La notion de régulation dans l’analyse de l’activité. Perspectives interdisciplinaires sur le travail et la santé, 8–1 (2006)

    Google Scholar 

  39. Diaz-Piedra, C., Rieiro, H., Cherino, A., Fuentes, L.J., Catena, A., Di Stasi, L.L.: The effects of flight complexity on gaze entropy: an experimental study with fighter pilots. Appl. Ergon. 77, 92–99 (2019)

    Article  Google Scholar 

  40. Poole, A., Ball, L.J., Phillips, P.: In search of salience: a response-time and eye-movement analysis of bookmark recognition. In: Fincher, S., Markopoulos, P., Moore, D., Ruddle, R. (eds.) People and Computers XVIII—Design for Life, pp. 363–378. Springer, London (2005). https://doi.org/10.1007/1-84628-062-1_23

    Chapter  Google Scholar 

  41. Cegarra, J., Chevalier, A.: The use of Tholos software for combining measures of mental workload: toward theoretical and methodological improvements. Behav. Res. Methods 40(4), 988–1000 (2008)

    Article  Google Scholar 

  42. Durkee, K.T., Pappada, S.M., Ortiz, A.E., Feeney, J.J., Galster, S.M.: System decision framework for augmenting human performance using real-time workload classifiers. In: IEEE International conference on Cognitive Methods in Situation Awareness and Decision Support (CogSIMA) (2015)

    Google Scholar 

  43. Sahayadhas, A., Sundaraj, K., Murugappan, M.: Detecting driver drowsiness based on sensors: a review. Sensors 12(12), 16937–16953 (2012)

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the DGA (Direction Générale de l’Armement), Thales AVS and Dassault Aviation which support the funding of this study and the scientific program “Man-Machine Teaming” in which the research project PRECOGS occurs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Kostenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostenko, A., Rauffet, P., Moga, S., Coppin, G. (2019). Operator Functional State: Measure It with Attention Intensity and Selectivity, Explain It with Cognitive Control. In: Longo, L., Leva, M. (eds) Human Mental Workload: Models and Applications. H-WORKLOAD 2019. Communications in Computer and Information Science, vol 1107. Springer, Cham. https://doi.org/10.1007/978-3-030-32423-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32423-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32422-3

  • Online ISBN: 978-3-030-32423-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics