Skip to main content

Formal Analysis of Qualitative Long-Term Behaviour in Parametrised Boolean Networks

  • Conference paper
  • First Online:
Formal Methods and Software Engineering (ICFEM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11852))

Included in the following conference series:

Abstract

Boolean networks offer an elegant way to model the behaviour of complex systems with positive and negative feedback. The long-term behaviour of a Boolean network is characterised by its attractors. Depending on various logical parameters, a Boolean network can exhibit vastly different types of behaviour. Hence, the structure and quality of attractors can undergo a significant change known in systems theory as attractor bifurcation. In this paper, we establish formally the notion of attractor bifurcation for Boolean networks. We propose a semi-symbolic approach to attractor bifurcation analysis based on a parallel algorithm. We use machine-learning techniques to construct a compact, human-readable, representation of the bifurcation analysis results. We demonstrate the method on a set of highly parametrised Boolean networks.

D. Šafránek—This work has been supported by the Czech Science Foundation grant No. 18-00178S.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abou-Jaoudé, W., Ouattara, D.A., Kaufman, M.: From structure to dynamics: frequency tuning in the P53-MDM2 network: I logical approach. J. Theor. Biol. 258(4), 561–577 (2009)

    Article  Google Scholar 

  2. Abou-Jaoudé, W., et al.: Logical modeling and dynamical analysis of cellular networks. Front. Genet. 7, 94 (2016)

    Article  Google Scholar 

  3. Adiga, A., Galyean, H., Kuhlman, C.J., Levet, M., Mortveit, H.S., Wu, S.: Network structure and activity in Boolean networks. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 210–223. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47221-7_16

    Chapter  MATH  Google Scholar 

  4. Akutsu, T., Hayashida, M., Tamura, T.: Integer programming-based methods for attractor detection and control of boolean networks. CDC 2009, 5610–5617 (2009)

    Google Scholar 

  5. Barnat, J., et al.: Detecting attractors in biological models with uncertain parameters. In: Feret, J., Koeppl, H. (eds.) CMSB 2017. LNCS, vol. 10545, pp. 40–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67471-1_3

    Chapter  Google Scholar 

  6. Beneš, N., Brim, L., Demko, M., Pastva, S., Šafránek, D.: Pithya: a parallel tool for parameter synthesis of piecewise multi-affine dynamical systems. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 591–598. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_29

    Chapter  Google Scholar 

  7. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. Carnegie-Mellon Univ Pittsburgh PA, School of Computer Science, Technical report (2001)

    Google Scholar 

  8. Chaouiya, C., Naldi, A., Thieffry, D.: Logical modelling of gene regulatory networks with GINsim. Bacterial Molecular Networks, pp. 463–479. Springer, New York (2012). https://doi.org/10.1007/978-1-61779-361-5_23

    Chapter  Google Scholar 

  9. Chatain, T., Haar, S., Jezequel, L., Paulevé, L., Schwoon, S.: Characterization of reachable attractors using petri net unfoldings. In: Mendes, P., Dada, J.O., Smallbone, K. (eds.) CMSB 2014. LNCS, vol. 8859, pp. 129–142. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12982-2_10

    Chapter  Google Scholar 

  10. Chatain, T., Haar, S., Paulevé, L.: Boolean networks: beyond generalized asynchronicity. In: Baetens, J.M., Kutrib, M. (eds.) Cellular Automata and Discrete Complex Systems, pp. 29–42. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92675-9_3

    Chapter  Google Scholar 

  11. Choo, S.M., Cho, K.H.: An efficient algorithm for identifying primary phenotype attractors of a large-scale Boolean network. BMC Syst. Biol. 10(1), 95 (2016)

    Article  Google Scholar 

  12. Devloo, V., Hansen, P., Labbé, M.: Identification of all steady states in large networks by logical analysis. Bull. Math. Biol. 65(6), 1025–1051 (2003)

    Article  Google Scholar 

  13. Dubrova, E., Teslenko, M.: A sat-based algorithm for finding attractors in synchronous Boolean networks. IEEE/ACM TCBB 8(5), 1393–1399 (2011)

    Google Scholar 

  14. Friedman, S.J., Supowit, K.J.: Finding the optimal variable ordering for binary decision diagrams. In: Proceedings of the 24th ACM/IEEE Design Automation Conference, pp. 348–356. ACM (1987)

    Google Scholar 

  15. Garg, A., Di Cara, A., Xenarios, I., Mendoza, L., De Micheli, G.: Synchronous versus asynchronous modeling of gene regulatory networks. Bioinformatics 24(17), 1917–1925 (2008)

    Article  Google Scholar 

  16. Giacobbe, M., Guet, C.C., Gupta, A., Henzinger, T.A., Paixão, T., Petrov, T.: Model checking gene regulatory networks. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 469–483. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_47

    Chapter  Google Scholar 

  17. Guo, W., Yang, G., Wu, W., He, L., Sun, M.I.: A parallel attractor finding algorithm based on Boolean satisfiability for genetic regulatory networks. PLOS ONE 9(4), 1–10 (2014)

    Google Scholar 

  18. Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random Boolean networks. In: Proceedings of the Fourth European Conference on Artificial Life (ECAL 1997), pp. 67–75. MIT Press (1997)

    Google Scholar 

  19. Klarner, H.: Contributions to the Analysis of Qualitative Models of Regulatory Networks. Ph.D. thesis, Free University of Berlin (2015)

    Google Scholar 

  20. Klarner, H., Bockmayr, A., Siebert, H.: Computing symbolic steady states of Boolean networks. In: Was, J., Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2014. LNCS, vol. 8751, pp. 561–570. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11520-7_59

    Chapter  Google Scholar 

  21. Klarner, H., Bockmayr, A., Siebert, H.: Computing maximal and minimal trap spaces of Boolean networks. Nat. Comput. 14(4), 535–544 (2015)

    Article  MathSciNet  Google Scholar 

  22. Klemm, K., Bornholdt, S.: Stable and unstable attractors in Boolean networks. Phys. Rev. E 72(5), 055101 (2005)

    Article  MathSciNet  Google Scholar 

  23. Kolčák, J., Šafránek, D., Haar, S., Paulevé, L.: Parameter space abstraction and unfolding semantics of discrete regulatory networks. TCS 765, 120–144 (2019)

    Article  MathSciNet  Google Scholar 

  24. Kuhlman, C.J., Mortveit, H.S.: Attractor stability in nonuniform Boolean networks. Theor. Comput. Sci. 559, 20–33 (2014)

    Article  MathSciNet  Google Scholar 

  25. Kuznetsov, Y.A.: Elements of Applied Bifurcation Theory, vol. 112. Springer Science & Business Media, Berlin (2013)

    Google Scholar 

  26. Le Novere, N.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16(3), 146 (2015)

    Article  Google Scholar 

  27. Mushthofa, M., Schockaert, S., De Cock, M.: Computing attractors of multi-valued gene regulatory networks using fuzzy answer set programming. FUZZ-IEEE 2016, 1955–1962 (2016)

    Google Scholar 

  28. Naldi, A., Thieffry, D., Chaouiya, C.: Decision diagrams for the representation and analysis of logical models of genetic networks. In: Calder, M., Gilmore, S. (eds.) CMSB 2007. LNCS, vol. 4695, pp. 233–247. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75140-3_16

    Chapter  Google Scholar 

  29. Quinlan, J.R.: Induction of decision trees. Mach. Learn. 1(1), 81–106 (1986)

    Google Scholar 

  30. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In: ICCAD 1993, pp. 42–47. IEEE (1993)

    Google Scholar 

  31. Saadatpour, A., Albert, I., Albert, R.: Attractor analysis of asynchronous Boolean models of signal transduction networks. J. Theor. Biol. 266(4), 641–656 (2010)

    Article  MathSciNet  Google Scholar 

  32. Safavian, S.R., Landgrebe, D.: A survey of decision tree classifier methodology. IEEE Trans. Syst., Man, and Cybern. 21(3), 660–674 (1991)

    Article  MathSciNet  Google Scholar 

  33. Streck, A.: Toolkit for reverse engineering of molecular pathways via parameter identification. Ph.D. thesis, Free University of Berlin (2016)

    Google Scholar 

  34. Tamura, T., Akutsu, T.: Detecting a singleton attractor in a Boolean network utilizing sat algorithms. IEICE Trans. Fundam. Electron., Commun. Comput. Sci. E92.A(2), 493–501 (2009)

    Article  Google Scholar 

  35. Thomas, R., d’Ari, R.: Biological Feedback. CRC Press, Boca Raton (1990)

    MATH  Google Scholar 

  36. Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an overview of methodology and applications. Phys. Biol. 9(5), 055001 (2012)

    Article  Google Scholar 

  37. Yuan, Q., Qu, H., Pang, J., Mizera, A.: Improving BDD-based attractor detection for synchronous Boolean networks. Sci. China Inf. Sci. 59(8), 212–220 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zhang, S.Q., Hayashida, M., Akutsu, T., Ching, W.K., Ng, M.K.: Algorithms for finding small attractors in Boolean networks. EURASIP J. Bioinform. Syst. Biol. 2007, 4–4 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Šafránek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beneš, N., Brim, L., Pastva, S., Poláček, J., Šafránek, D. (2019). Formal Analysis of Qualitative Long-Term Behaviour in Parametrised Boolean Networks. In: Ait-Ameur, Y., Qin, S. (eds) Formal Methods and Software Engineering. ICFEM 2019. Lecture Notes in Computer Science(), vol 11852. Springer, Cham. https://doi.org/10.1007/978-3-030-32409-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32409-4_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32408-7

  • Online ISBN: 978-3-030-32409-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics