Advertisement

A Novel Graph Neural Network to Localize Eloquent Cortex in Brain Tumor Patients from Resting-State fMRI Connectivity

  • Naresh NandakumarEmail author
  • Komal Manzoor
  • Jay J. Pillai
  • Sachin K. Gujar
  • Haris I. Sair
  • Archana Venkataraman
Conference paper
  • 699 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11848)

Abstract

We develop a novel method to localize the language and motor areas of the eloquent cortex in brain tumor patients based on resting-state fMRI (rs-fMRI) connectivity. Our method leverages the representation power of convolutional neural networks through specialized filters that act topologically on the rs-fMRI connectivity data. This Graph Neural Network (GNN) classifies each parcel in the brain into eloquent cortex, tumor, or background gray matter, thus accommodating varying tumor characteristics across patients. Our loss function also reflects the large class-imbalance present in our data. We evaluate our GNN on rs-fMRI data from 60 brain tumor patients with different tumor sizes and locations. We use motor and language task fMRI for validation. Our model achieves better localization than linear SVM, random forest, and a multilayer perceptron architecture. Our GNN is able to correctly identify bilateral language areas in the brain even when trained on patients whose language network is lateralized to the left hemisphere.

Keywords

Rs-fMRI Graph Neural Network Language localization 

Notes

Acknowledgements

This work was supported by the National Science Foundation CAREER award 1845430 (PI: Venkataraman) and the Research & Education Foundation Carestream Health RSNA Research Scholar Grant RSCH1420.

References

  1. 1.
    Duffau, H.: Lessons from brain mapping in surgery for low-grade glioma: insights into associations between tumour and brain plasticity. Lancet Neurol. 4(8), 476–486 (2005)CrossRefGoogle Scholar
  2. 2.
    Sair, H.I., et al.: Presurgical brain mapping of the language network in patients with brain tumors using resting-state fMRI: comparison with task fMRI. Hum. Brain Mapp. 37(3), 913–923 (2016)CrossRefGoogle Scholar
  3. 3.
    Langs, G., et al.: Functional geometry alignment and localization of brain areas. In: Advances in Neural Information Processing Systems, pp. 1225–1233 (2010)Google Scholar
  4. 4.
    Nandakumar, N., et al.: Defining patient specific functional parcellations in lesional cohorts via Markov random fields. In: Wu, G., Rekik, I., Schirmer, M.D., Chung, A.W., Munsell, B. (eds.) CNI 2018. LNCS, vol. 11083, pp. 88–98. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00755-3_10CrossRefGoogle Scholar
  5. 5.
    Gohel, S., et al.: Resting-state functional connectivity of the middle frontal gyrus can predict language lateralization in patients with brain tumors. Am. J. Neuroradiol. (2019)Google Scholar
  6. 6.
    Hacker, C.D., et al.: Resting state network estimation in individual subjects. Neuroimage 82, 616–633 (2013)CrossRefGoogle Scholar
  7. 7.
    Lee, M.H., et al.: Clinical resting-state fMRI in the preoperative setting: are we ready for prime time? Top. Magn. Reson. Imaging: TMRI 25(1), 11 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kamnitsas, K., et al.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. MedIA 36, 61–78 (2017)Google Scholar
  9. 9.
    Khosla, M., Jamison, K., Kuceyeski, A., Sabuncu, M.R.: 3D convolutional neural networks for classification of functional connectomes. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 137–145. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00889-5_16CrossRefGoogle Scholar
  10. 10.
    Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. NeuroImage 146, 1038–1049 (2017)CrossRefGoogle Scholar
  11. 11.
    Opsahl, T., et al.: Node centrality in weighted networks: generalizing degree and shortest paths. Soc. Netw. 32(3), 245–251 (2010)CrossRefGoogle Scholar
  12. 12.
    Suresh, S., et al.: Risk-sensitive loss functions for sparse multi-category classification problems. Inf. Sci. 178(12), 2621–2638 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Jack Jr., C.R., et al.: Sensory motor cortex: correlation of presurgical mapping with functional mr imaging and invasive cortical mapping. Radiology 190(1), 85–92 (1994)CrossRefGoogle Scholar
  14. 14.
    Craddock, R.C., et al.: A whole brain fmri atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Naresh Nandakumar
    • 1
    Email author
  • Komal Manzoor
    • 2
  • Jay J. Pillai
    • 2
  • Sachin K. Gujar
    • 2
  • Haris I. Sair
    • 2
  • Archana Venkataraman
    • 1
  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Department of NeuroradiologyJohns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations