Test-Retest Reliability of Functional Networks for Evaluation of Data-Driven Parcellation

  • Jianfeng Zeng
  • Anh The Dang
  • Gowtham AtluriEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11848)


Brain parcellations play a key role in functional connectomics. A set of standard neuro-anatomical brain atlases are in common use in most studies. In addition, data-driven parcellations computed from fMRI data using a variety of clustering algorithms have also been used. Recent studies set out to determine the best parcellation in terms of quality and reliability have remained inconclusive without a clear winner. In this work, we investigated the utility of test-retest reliability of functional connectivity as an evaluation metric for comparing parcellations. Specifically, using data from the human connectome project, we compared a data-driven parcellation and a geometric parcellation using Intraclass Correlation Coefficient (ICC). We also investigated the impact of parcellation granularity on the test-retest reliability. We observed that the ICCs for geometric parcellation are better than those of a data-driven parcellation, suggesting that the FCs computed using regular parcels in the geometric atlases are more reliable than those computed using a data-driven parcellation.


Functional connectivity Test-Retest reliability Parcellation Precision neuroscience 



This work was supported by NSF Grant IIS-1850204. The computational work is performed using the Data Analytics Cluster acquired through the Ohio Dept. of Higher Education’s RAPIDS grant in 2018.


  1. 1.
  2. 2.
  3. 3.
  4. 4.
    Andellini, M., Cannatà, V., Gazzellini, S., Bernardi, B., Napolitano, A.: Test-retest reliability of graph metrics of resting state MRI functional brain networks: a review. J. Neurosci. Methods 253, 183–192 (2015)CrossRefGoogle Scholar
  5. 5.
    Arslan, S., Ktena, S.I., Makropoulos, A., Robinson, E.C., Rueckert, D., Parisot, S.: Human brain mapping: a systematic comparison of parcellation methods for the human cerebral cortex. Neuroimage 170, 5–30 (2018)CrossRefGoogle Scholar
  6. 6.
    Atluri, G., MacDonald III, A., Lim, K.O., Kumar, V.: The brain-network paradigm: using functional imaging data to study how the brain works. Computer 49(10), 65–71 (2016)CrossRefGoogle Scholar
  7. 7.
    Bearden, C.E., Thompson, P.M.: Emerging global initiatives in neurogenetics: the enhancing neuroimaging genetics through meta-analysis (ENIGMA) consortium. Neuron 94(2), 232–236 (2017)CrossRefGoogle Scholar
  8. 8.
    Beckmann, C.F., Mackay, C.E., Filippini, N., Smith, S.M.: Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. Neuroimage 47(Suppl 1), S148 (2009)CrossRefGoogle Scholar
  9. 9.
    Blumensath, T., et al.: Spatially constrained hierarchical parcellation of the brain with resting-state fMRI. Neuroimage 76, 313–324 (2013)CrossRefGoogle Scholar
  10. 10.
    Braun, U., et al.: Test-retest reliability of resting-state connectivity network characteristics using fMRI and graph theoretical measures. NeuroImage 59(2), 1404–1412 (2012) CrossRefGoogle Scholar
  11. 11.
    Cao, H., et al.: Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state. Neuroimage 84, 888–900 (2014)CrossRefGoogle Scholar
  12. 12.
    Craddock, R.C., James, G.A., Holtzheimer III, P.E., Hu, X.P., Mayberg, H.S.: A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33(8), 1914–1928 (2012)CrossRefGoogle Scholar
  13. 13.
    Dubois, J., Adolphs, R.: Building a science of individual differences from fMRI. Trends Cogn. Sci. 20(6), 425–443 (2016)CrossRefGoogle Scholar
  14. 14.
    Eickhoff, S.B., Yeo, B.T., Genon, S.: Imaging-based parcellations of the human brain. Nat. Rev. Neurosci. 19, 672–686 (2018)CrossRefGoogle Scholar
  15. 15.
    Gordon, E.M., Laumann, T.O., Adeyemo, B., Huckins, J.F., Kelley, W.M., Petersen, S.E.: Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26(1), 288–303 (2014) CrossRefGoogle Scholar
  16. 16.
    Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging: Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)CrossRefGoogle Scholar
  17. 17.
    Jbabdi, S., Woolrich, M.W., Behrens, T.E.J.: Multiple-subjects connectivity-based parcellation using hierarchical Dirichlet process mixture models. NeuroImage 44(2), 373–384 (2009)CrossRefGoogle Scholar
  18. 18.
    Kelly, C., Biswal, B.B., Craddock, R.C., Castellanos, F.X., Milham, M.P.: Characterizing variation in the functional connectome: promise and pitfalls. Trends Cogn. Sci. 16(3), 181–188 (2012)CrossRefGoogle Scholar
  19. 19.
    Koo, T.K., Li, M.Y.: A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15(2), 155–163 (2016)CrossRefGoogle Scholar
  20. 20.
    Meindl, T., et al.: Test-retest reproducibility of the default-mode network in healthy individuals. Hum. Brain Mapp. 31(2), 237–246 (2010)Google Scholar
  21. 21.
    Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A.: Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86(2), 420–428 (1979)CrossRefGoogle Scholar
  22. 22.
    Murphy, K., Birn, R.M., Handwerker, D.A., Jones, T.B., Bandettini, P.A.: The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage 44(3), 893–905 (2009)CrossRefGoogle Scholar
  23. 23.
    Potkin, S.G., Ford, J.M.: Widespread cortical dysfunction in schizophrenia: the FBIRN imaging consortium. Schizophr. Bull. 35(1), 15–18 (2008)CrossRefGoogle Scholar
  24. 24.
    Preti, M.G., Bolton, T.A., Van De Ville, D.: The dynamic functional connectome: state-of-the-art and perspectives. Neuroimage 160, 41–54 (2017)CrossRefGoogle Scholar
  25. 25.
    Rosen, B.R., Savoy, R.L.: fMRI at 20: has it changed the world? Neuroimage 62(2), 1316–1324 (2012)CrossRefGoogle Scholar
  26. 26.
    Thirion, B., Varoquaux, G., Dohmatob, E., Poline, J.B.: Which fMRI clustering gives good brain parcellations? Front. Neurosci. 8, 167 (2014)CrossRefGoogle Scholar
  27. 27.
    Thomas Yeo, B., et al.: The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106(3), 1125–1165 (2011)CrossRefGoogle Scholar
  28. 28.
    Tzourio-Mazoyer, N., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002)CrossRefGoogle Scholar
  29. 29.
    Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)CrossRefGoogle Scholar
  30. 30.
    Zilles, K., Amunts, K.: Centenary of Brodmann’s map-conception and fate. Nat. Rev. Neurosci. 11(2), 139 (2010)CrossRefGoogle Scholar
  31. 31.
    Zuo, X.N., Kelly, C., Adelstein, J.S., Klein, D.F., Castellanos, F.X., Milham, M.P.: Reliable intrinsic connectivity networks: test-retest evaluation using ICA and dual regression approach. Neuroimage 49(3), 2163–2177 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of EECSUniversity of CincinnatiCincinnatiUSA

Personalised recommendations