Skip to main content

Mycorrhiza in Mixed Plantations

  • Chapter
  • First Online:
Mixed Plantations of Eucalyptus and Leguminous Trees

Abstract

Mycorrhiza is a mutualistic symbiosis found in about 90% of the terrestrial plants. The arbuscular mycorrhiza (AM) and ectomycorrhiza (ECM), present in Eucalypt and Acacia, are the most studied in forests due to their importance in ecosystem productivity and sustainability in forestry. Here, our focus is to show recent results regarding their incidence, diversity, and functioning in planted forests, mainly those of Eucalyptus and Acacia spp. in consortia. Until recently, everybody assumed that arbuscular mycorrhizal fungi (AMF) were restricted to the uppermost 30 cm of soil. Yet, we evaluated their presence at the soil surface and in much deeper layers, since Eucalypt presents a root system that reaches down to about 20 m, still active in acquiring nutrients and water from deep reserves, which is of utmost importance during drought periods. In tropical soils of low pH and low fertility, with highly variable moisture levels, mycorrhiza provides better growth and higher tolerance to water deficiency and high temperatures, protection against pathogens, and greater efficiency in nutrient uptake. In short, mycorrhiza is a key factor of sustainability for Eucalypt stands in monoculture and in mixed plantations, mainly in tropical highly weathered soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerer R (1995) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma A, Hock B (eds) Mycorrhiza. Springer Verlag, Berlin, pp 685–734

    Chapter  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae—a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11:107–114

    Article  Google Scholar 

  • Aguilar-Trigueros CA, Powell JR, Anderson IC et al (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19:432–438

    Article  CAS  PubMed  Google Scholar 

  • Anderson IC, Cairney JWG (2004) Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ Microbiol 6:769–779

    Article  CAS  PubMed  Google Scholar 

  • Barros FM, Bradi RM, Reis MS (1978) Micorriza em eucalipto. Rev Árv 2:130–140

    Google Scholar 

  • Bellei MD, Garbaye J, Gil M (1992) Mycorrhizal succession in young Eucalyptus-Viminalis plantations in Santa-Catarina (southern Brazil). Forest Ecol Manag 54:205–213

    Article  Google Scholar 

  • Berbara RLL, Souza FA, Fonseca HMAC (2006) III—Fungos Micorrízicos Arbusculares: Muito Além da Nutrição. In: Nutrição Mineral de Plantas. http://www.ufrrj.br/amfoods/arquivos/arq_publicacao/20_ARQ.pdf. Accessed 18 Jun 2019

  • Bethlenfalvay GJ, Brown MS, Stafford AE (1985) Glycine-Glomus-rhizobium symbiosis: II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol 79:1054–1058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bini D (2012) Atributos microbianos e químicos do solo e da serapilheira em plantios puros e mistos de Eucalyptus e Acacia mangium. Thesis, Universidade de São Paulo

    Google Scholar 

  • Bini D et al (2018) Intercropping Acacia mangium stimulates AMF colonization and soil phosphatase activity in Eucalyptus grandis. Sci Agric 75:102–110. https://doi.org/10.1590/1678-992x-2016-0337

    Article  CAS  Google Scholar 

  • Brundrett M (2004) Diversity and classification of mycorrhizal associations. Biol Rev 79:473–495

    Article  PubMed  Google Scholar 

  • Brundrett MC (1991) Mycorrhizas in natural ecosystems. In: Macfayden A, Begon M, Fitter AH (eds) Advances in ecological research. Academic, London, pp 171–313

    Chapter  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol. 154:275–304

    Article  PubMed  Google Scholar 

  • Campos DTDS, Silva MDCSD, Luz JMRD et al (2011) Colonização micorrízica em plantios de eucalipto. Rev Árvore 35:965–974

    Article  CAS  Google Scholar 

  • Caproni AL et al (2005) Fungos micorrízicos arbusculares em estéril revegetado com Acacia mangium, após mineração de bauxita. Rev Árv 29:373–381

    Article  Google Scholar 

  • Cardoso EJBN (1985) Effect of Mycorrhiza and rock phosphate on growth and production of the Symbiosis soybean-rhizobium. Rev Bras Ci Solo 9:125–130

    Google Scholar 

  • Cardoso EJBN et al (2010) Micorrizas arbusculares na aquisição de nutrientes pelas plantas. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisas no Brasil. Editora UFLA, Lavras, pp 153–215

    Google Scholar 

  • Cardoso EJBN, Andreote FD (2016) Microbiologia do Solo (recurso eletrônico), 2.ed. ESALQ, Piracicaba-SP, 221 p

    Google Scholar 

  • Cardoso EJBN, Nogueira MA, Zangaro W (2017) Importance of Mycorrhizae in tropical soils. Diversity and benefits of microorganisms from the tropics 245–267. https://doi.org/10.1007/978-3-319-55804-2_11

  • Carvalho TS, Moreira FMS (2010) Simbioses leguminosas, fungos micorrízicos e bactérias fixadoras de nitrogênio nodulíferas. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisa no Brasil. Editora UFLA, Lavras, pp 383–414

    Google Scholar 

  • Cavagnaro TR, Sokolow SK, Jackson LE (2007) Mycorrhizal effects on growth and nutrition of tomato under elevated atmospheric carbon dioxide. Funct Plant Biol 34:730–736

    Article  CAS  PubMed  Google Scholar 

  • Chen YL et al (2014) Use of mycorrhizal fungi for forest plantations and mine site rehabilitation. In: Solaiman ZM et al (eds) Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin, Heidelberg, pp 325–355

    Chapter  Google Scholar 

  • Chen YL, Liu S, Dell B (2007) Mycorrhizal status of Eucalyptus plantations in South China and implications for management. Mycorrhiza 17:527–535

    Article  PubMed  Google Scholar 

  • Chilvers GA, Pryor LD (1965) The structure of Eucalyptus mycorrhizas. Aust J Bot 13:245–259

    Article  Google Scholar 

  • Chiquete AAS (2011) Diversidade de Fungos em Solos de Florestas Plantadas de Eucalipto. Universidade Federal de Viçosa, Tese

    Google Scholar 

  • Churchland C, Grayston SJ (2014) Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front Microbiol 5:261. https://doi.org/10.3389/fmicb.2014.00261

    Article  PubMed  PubMed Central  Google Scholar 

  • Clasen BE, Silveira ADO, Baldoni DB et al (2018) Characterization of Ectomycorrhizal species through molecular biology tools and morphotyping. Sci Agr 75(3):246–254

    Article  CAS  Google Scholar 

  • Craig GF, Atkins CA, Bell DT (1991) Effect of salinity on growth of four strains of rhizobium and their infectivity and effectiveness on two species of Acacia. Plant Soil 133(2):253–262

    Article  CAS  Google Scholar 

  • Dalpé Y, Diop TA, Plenchette C, Gueye M (2000) Glomales species associated with surface and deep rhizosphere of Faidherbia albida in Senegal. Mycorrhiza 10(3):125–129

    Article  Google Scholar 

  • Dickson S (2004) The Arum–Paris continuum of mycorrhizal symbioses. New Phytol 163(1):187–200

    Article  PubMed  Google Scholar 

  • Dommergues YR (1987) The role of biological nitrogen fixation in agroforestry. Agroforestry, p 245

    Google Scholar 

  • Egerton-Warburton LM, Querejeta JI, Allen MF (2007) Common mycorrhizal networks provide a potential pathway for the transfer of hydraulically lifted water between plants. J Exp Bot 58(6):1473–1483

    Article  CAS  PubMed  Google Scholar 

  • Frank AB, Trappe JM (2005) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885). Mycorrhiza 15:267–275

    Article  CAS  PubMed  Google Scholar 

  • Futai K, Taniguchi T, Kataoka R (2008) Ectomycorrhizae and their importance in forest ecosystems. In: Siddiqui ZA et al (eds) Mycorrhizae: sustainable agriculture and forestry. Springer, Dordrecht, pp 241–285

    Chapter  Google Scholar 

  • Gallaud J (1905) Étude sur les mycorrhizes endotrophes. Rev Gn Bot 17:5–500

    Google Scholar 

  • Garbaye J (1991) Biological interactions in the mycorrhizosphere. Experientia 47:370–375

    Article  Google Scholar 

  • Gasparotto FA, Navarrete AA, Souza FA et al (2010) Técnicas moleculares aplicadas ao estudo das micorrizas. In: Siqueira JO (ed) Micorrizas: 30 anos de pesquisa no Brasil. Editora UFLA, Lavras, pp 551–582

    Google Scholar 

  • Germon A, Guerrini IA, Bordron B et al (2018) Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-roots down to a depth of 17 m. Plant Soil 424:203–220

    Article  CAS  Google Scholar 

  • Gocke MI, Huguet A, Derenne S et al (2017) Disentangling interactions between microbial communities and roots in deep subsoil. Sci Total Environ 575:135–145

    Article  CAS  PubMed  Google Scholar 

  • Gomes SP, Trufem SFB (1998) Fungos micorrízicos arbusculares (Glomales, Zygomycota) na Ilha dos Eucaliptos, Represa do Guarapiranga, São Paulo, SP. Acta Bot Bras 12:393–401

    Article  Google Scholar 

  • Harley JLH, Smith SE (1983) Mycorrhizal symbiosis. Academic, New York, p 483

    Google Scholar 

  • He X, Critchley C, Ng H, Bledsoe C et al (2005) Nodulated N2-fixing Casuarina cunninghamiana is the sink for net N transfer from non-N2-fixing Eucalyptus maculata via an ectomycorrhizal fungus Pisolithus sp using (NH4+)-N-15 or (NO3−)-N-15 supplied as ammonium nitrate. New Phytol 167:897–912

    Article  CAS  PubMed  Google Scholar 

  • He X, Xu M, Qiu G et al (2009) Use of N-15 stable isotope to quantify nitrogen transfer between mycorrhizal plants. J Plant Ecol 2:107–118

    Article  Google Scholar 

  • Helgason T, Daniell TJ, Husband R et al (1998) Ploughing up the wood-wide web? Nature

    Google Scholar 

  • Jalonen R, Nygren P, Sierra J (2009) Transfer of nitrogen from a tropical legume tree to an associated fodder grass via root exudation and common mycelial networks. Plant Cell Environ 32:1366–1376

    Article  CAS  PubMed  Google Scholar 

  • Kasuya MCM, Costa MD, Araújo EF et al (2010) Ectomicorrizas no Brasil: biologia e nutrição de plantas. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisa no Brasil. Editora UFLA, Lavras, pp 615–643

    Google Scholar 

  • Laclau JP, Nouvellon Y, Reine C et al (2013) Mixing Eucalyptus and Acacia trees leads to fine root over-yielding and vertical segregation between species. Oecologia 172:903–913

    Article  PubMed  Google Scholar 

  • Lambais GR, Jourdan C, Piccolo MD et al (2017) Contrasting phenology of Eucalyptus grandis fine roots in upper and very deep soil layers in Brazil. Plant Soil 421:301–318

    Article  CAS  Google Scholar 

  • Lambais MR (2010) Sinalização e transdução de sinais em micorrizas arbusculares. In: Siqueira JO et al (eds) Micorrizas: 30 anos de pesquisas no Brasil. Editora UFLA, Lavras, p 119

    Google Scholar 

  • Lambais MR et al (2005) Diversidade microbiana nos solos: definindo novos paradigmas. In: Vidal-Torrado P et al (eds) Tópicos em ciência do solo. SBCS, Viçosa, pp 43–84

    Google Scholar 

  • Lammel DR, Cruz LM, Mescolotti DLC et al (2015) Woody Mimosa species are nodulated by Burkholderia in ombrophylous forest soils and their symbioses are enhanced by arbuscular mycorrhizal fungi (AMF). Plant Soil 393(1–2):123–135

    Article  CAS  Google Scholar 

  • Levisohn J (1958) Effects of mycorrhiza on tree growth. Soils Fertil 21:73–82

    Google Scholar 

  • Li CH, Yan K, Tang LS et al (2014) Change in deep soil microbial communities due to long-term fertilization. Soil Biol Biochem 75:264–272

    Article  CAS  Google Scholar 

  • Liese R, Lubbe T, Albers NW et al (2018) The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol 38:83–95

    Article  CAS  PubMed  Google Scholar 

  • Malajczuk N, Linderman RG, Kough J et al (1981) Presence of vesicular-arbuscular mycorrhizae in Eucalyptus spp. and Acacia sp., and their absence in Banksia sp. after inoculation with Glomus fasciculatus. New Phytol 87:567–572

    Article  Google Scholar 

  • McCormack ML, Fernandez CW, Brooks H et al (2017) Production dynamics of Cenococcum geophilum ectomycorrhizas in response to long-term elevated CO2 and N fertilization. Fungal Ecol 26:11–19

    Article  Google Scholar 

  • Mendes Filho PF, Vasconcellos RLF, Paula AM et al (2010) Evaluating the potential of forest species under “microbial management” for the restoration of degraded mining areas. Water Air Soil Pollut 208:79–89

    Article  CAS  Google Scholar 

  • Meng LB, Zhang AY, Wang F et al (2015) Arbuscular mycorrhizal fungi and rhizobium facilitate nitrogen uptake and transfer in soybean/maize intercropping system. Front Plant Sci 6:10

    Google Scholar 

  • Midgley MG, Brzostek E, Phillips RP (2015) Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J Ecol 103:1454–1463

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioses: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant–fungal process. Chapman & Hall, New York, pp 357–423

    Google Scholar 

  • Montesinos-Navarro A, Verdu M, Querejetac JI et al (2016) Soil fungi promote nitrogen transfer among plants involved in long-lasting facilitative interactions. Perspect Plant Ecol 18:45–51

    Article  Google Scholar 

  • Moreira FS, Siqueira JO (2006) Microbiologia e bioquimica do solo. Editora UFLA, Lavras

    Google Scholar 

  • Mortimer PE, Pérez-Fernández MA, Valentine AJ (2008) The role of arbuscular mycorrhizal colonization in the carbon and nutrient economy of the tripartite symbiosis with nodulated Phaseolus vulgaris. Soil Biol Biochem 40:1019–1027

    Article  CAS  Google Scholar 

  • Moyer-Henry KA, Burton JW, Israel D et al (2006) Nitrogen transfer between plants: a N-15 natural abundance study with crop and weed species. Plant Soil 282:7–20

    Article  CAS  Google Scholar 

  • Nogueira MA, Cardoso EJBN (2006) Plant growth and phosphorus uptake in mycorrhizal Rangpur lime seedlings under different levels of phosphorus. Pesq Agrop Brasileira 41:93–99

    Article  Google Scholar 

  • Oliveira VL, Schmidt VDB, Bellei MM (1997) Patterns of arbuscular- and ecto-mycorrhizal colonization of Eucalyptus dunnii in southern Brazil. Ann Sci Forest 54:473–481

    Article  Google Scholar 

  • Paula RR, Bouillet J-P, Ocheuze Trivelin PC et al (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108

    Article  CAS  Google Scholar 

  • Pereira APA (2015) Influência da profundidade do solo e do manejo de Eucalyptus grandis e Acacia mangium na estrutura das comunidades microbianas do solo. Dissertação, Universidade de São Paulo

    Google Scholar 

  • Pereira APD, de Andrade PAM, Bini D et al (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. PLoS One 12

    Google Scholar 

  • Pereira APD, Santana MC, Bonfim JA et al (2018) Digging deeper to study the distribution of mycorrhizal arbuscular fungi along the soil profile in pure and mixed Eucalyptus grandis and Acacia mangium plantations. Appl Soil Ecol 128:1–11

    Article  Google Scholar 

  • Peterson RL, Bonfante P (1994) Comparative structure of vesicular-arbuscular mycorrhizas and ectomycorrhizas. Plant Soil 159(1):79–88

    Article  Google Scholar 

  • Prieto I, Roldán A, Huygens D et al (2016) Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant Soil 406(1–2):15–27

    Article  CAS  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems. Experientia 47(4):376–391

    Article  Google Scholar 

  • Requeña N, Perez-Solis E, Azcon-Aguilar C, Jeffries P, Barea JM (2001) Management of indigenous plant– microbe symbioses aids restoration of desertified ecosystems. Appl Environ Microbiol 67:495–498

    Article  PubMed  PubMed Central  Google Scholar 

  • Requeña N, Serrano E, Ocón Z, Breuninger M (2007) Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochemistry 68(1):33–40

    Article  CAS  PubMed  Google Scholar 

  • Santana MC (2017) Análise da comunidade de fungos em áreas de monoculturas e consórcio de Eucalyptus grandis e Acacia mangium. Dissertation, Universidade de São Paulo

    Google Scholar 

  • Santana MC, Pereira APA, Forti VA, Cardoso EJBN (2016) Eucalypt as trap plant to capture associative fungi in soil samples from great depth. Int J Environ Agric Res 2:191–194

    Google Scholar 

  • Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol 172(1):159–168

    Article  CAS  PubMed  Google Scholar 

  • Schenck NC, Perez Y (1990) Manual for the identification of VA mycorrhizal fungi, vol 286. Synergistic, Gainesville

    Google Scholar 

  • Shah F, Nicolás C, Bentzer J, Ellström M, Smits M, Rineau F et al (2016) Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol 209(4):1705–1719

    Article  CAS  PubMed  Google Scholar 

  • Simard SW, Beiler KJ, Bingham MA, Deslippe JR, Philip LJ, Teste FP (2012) Mycorrhizal networks: mechanisms, ecology and modelling. Fungal Biol Rev 26(1):39–60

    Article  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388(6642):579

    Article  CAS  Google Scholar 

  • Siqueira JO, Lambais MR, Stürmer SL (2002) Fungos micorrízicos arbusculares: origem e características dos fungos Glomaleanos. Biotecnol Ciên Desen 25:12–21

    Google Scholar 

  • Smith SE, Read DJ (2008) The symbionts forming arbuscular mycorrhizas. Mycor Symb 2:13–41

    Article  Google Scholar 

  • Smith SE, Read DJ (2010) Mycorrhizal symbiosis. Academic, Cambridge

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  PubMed  Google Scholar 

  • Souza LABD, Bonnassis PAP, Silva Filho GN, Oliveira VLD (2008) New isolates of ectomycorrhizal fungi and the growth of eucalypt. Pesqui Agropecu Bras 43(2):235–241

    Article  Google Scholar 

  • Souza VC, Silva RA, Cardoso GD, Barreto AF (2006) Estudos sobre fungos micorrízicos. R Bras Eng Agríc Ambiental 10(3):612–618

    Article  Google Scholar 

  • Steffen RB, Antoniolli ZI, Steffen GPK, Eckhardt DP (2010) Micorrização das mudas de Eucalyptus grandis Hill ex Maiden comercializadas no município de Santa Maria, RS. Ciên Natura 32(1):25–35

    Google Scholar 

  • Stürmer SL (2012) A history of the taxonomy and systematics of arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota. Mycorrhiza 22(4):247–258

    Article  PubMed  Google Scholar 

  • Suz LM, Azul AM, Morris MH, Bledsoe CS, Martín MP (2008) Morphotyping and molecular methods to characterize ectomycorrhizal roots and hyphae in soil. In: Molecular mechanisms of plant and microbe coexistence. Springer, Berlin, pp 437–474

    Chapter  Google Scholar 

  • Taylor MK, Lankau RA, Würzburger N (2016) Mycorrhizal associations of trees have different indirect effects on organic matter decomposition. J Ecol 104(6):1576–1584

    Article  CAS  Google Scholar 

  • Tedersoo L, Brundrett MC (2017) Evolution of ectomycorrhizal symbiosis in plants. In: Biogeography of mycorrhizal symbiosis. Springer, Cham, pp 407–467

    Chapter  Google Scholar 

  • Torrecillas E, Alguacil MM, Roldán A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78(17):6180–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Der Heijden MG, Martin FM, Selosse MA, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205(4):1406–1423

    Article  CAS  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12(11):3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Vesk PA, Ashford AE, Markovina AL, Allaway WG (2000) Apoplasmic barriers and their significance in the exodermis and sheath of Eucalyptus pilularisPisolithus tinctorius ectomycorrhizas. New Phytol 145(2):333–346

    Article  Google Scholar 

  • Wang B, Qiu YL (2006) Phylogenetic distribution and evolution of mycorrhizas in land plants. Mycorrhiza 16(5):299–363

    Article  CAS  PubMed  Google Scholar 

  • Willis A, Rodrigues BF, Harris PJ (2013) The ecology of arbuscular mycorrhizal fungi. Crit Rev Plant Sci 32(1):1–20

    Article  Google Scholar 

  • Yin H, Wheeler E, Phillips RP (2014) Root-induced changes in nutrient cycling in forests depend on exudation rates. Soil Biol Biochem 78:213–221

    Article  CAS  Google Scholar 

  • Zheng L, Zhao X, Zhu G, Yang W, Xia C, Xu T (2017) Occurrence and abundance of ammonia-oxidizing archaea and bacteria from the surface to below the water table, in deep soil, and their contributions to nitrification. Microb Ope 6(4):e00488

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maiele Cintra Santana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Santana, M.C., Pereira, A.P.d.A., de Bacco Lopes, B.A., Robin, A., Silva, A.M.M., Bran Nogueira Cardoso, E.J. (2020). Mycorrhiza in Mixed Plantations. In: Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A. (eds) Mixed Plantations of Eucalyptus and Leguminous Trees. Springer, Cham. https://doi.org/10.1007/978-3-030-32365-3_7

Download citation

Publish with us

Policies and ethics