Skip to main content

Soil Bacterial Structure and Composition in Pure and Mixed Plantations of Eucalyptus spp. and Leguminous Trees

  • Chapter
  • First Online:
Mixed Plantations of Eucalyptus and Leguminous Trees

Abstract

The soil harbors an incredibly high biodiversity, composed by many macro- and microorganisms, where bacteria are the most abundant and diverse ones. These tiny organisms are major players in nutrient cycling and are responsible for the maintenance of soil fertility and plant productivity by direct and indirect interactions. They are able to biologically fix nitrogen, produce phytohormones, increase nutrient bioavailability, protect from pathogens, and modulate plant responses to stress among many other functions. However, they are structured in very complex communities and controlled by many different factors and their responses to land use and management in forestry systems are still in the very beginning of our understanding. In this chapter, we present briefly the role of the bacterial community in forestry ecosystems, and how it responds to intercropping of Eucalyptus and Acacia. We show that there is a strong indication that the consortium of Eucalyptus with legume trees can integrate the soil bacterial community, increasing microbial activity and system stability with direct benefits to soil biogeochemistry. We also show that the bacterial biodiversity associated with trees can be explored in a biotechnological way, representing a green technology to optimize plant growth improving the sustainability of wood production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akinsanya MA, Goh JK, Lim SP et al (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genomics Data 6:159–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Balieiro FDC, Pereira MG, Alves BJR, de Resende AS, Franco AA (2008) Soil carbon and nitrogen in pasture soil reforested with Eucalyptus and Guachapele. Rev Bras Ciênc Solo 32(3):1253–1260

    Google Scholar 

  • Bent E, Tuzun S, Chanway CP et al (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  CAS  PubMed  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microb Ecol:1–13

    Google Scholar 

  • Bernhard-Reversat F (1988) Soil nitrogen mineralization under a Eucalyptus plantation and a natural Acacia forest in Senegal. For Ecol Manag 23(4):233–244

    Google Scholar 

  • Bini D, Santos CA d, Bouillet JP et al (2013) Eucalyptus grandis and Acacia mangium in monoculture and intercropped plantations: Evolution of soil and litter microbial and chemical attributes during early stages of plant development. Appl Soil Ecol 63:57–66

    Article  Google Scholar 

  • Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8:e56329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonfante P, Anca I-A (2009) Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu Rev Microbiol 63:363–383

    Article  CAS  PubMed  Google Scholar 

  • Chaparro JM, Sheflin AM, Manter DK et al (2012) Manipulating the soil microbiome to increase soil health and plant fertility. Biol Fertil Soils 48:489–499

    Article  Google Scholar 

  • Cuer CA, Rodrigues R de AR, Balieiro FC et al (2018) Short-term effect of Eucalyptus plantations on soil microbial communities and soil-atmosphere methane and nitrous oxide exchange. Sci Rep 8:15133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Oliveira Paulucio V, da Silva CF, Martins MA et al. (2017) Reforestation of a degraded area with Eucalyptus and Sesbania: microbial activity and chemical soil properties. Rev Bras Cienc do Solo 41:1–14.

    Google Scholar 

  • Ding J, Zhang Y, Wang M et al (2015) Soil organic matter quantity and quality shape microbial community compositions of subtropical broadleaved forests. Mol Ecol 24:5175–5185

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Quecine MC, Lacava PT et al (2008) Diversity of endophytic bacteria from Eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans. FEMS Microbiol Lett 287:8–14

    Article  CAS  PubMed  Google Scholar 

  • Fierer N (2017) Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol 15:579–590

    Article  CAS  PubMed  Google Scholar 

  • Fierer N, Jackson RB (2006) The diversity and biogeography of soil bacterial communities. Proc Natl Acad Sci U S A A103:626–631

    Article  CAS  Google Scholar 

  • Fonseca E d S, Peixoto RS, Rosado AS et al (2018) The microbiome of eucalyptus roots under different management conditions and its potential for biological nitrogen fixation. Microb Ecol 75:183–191

    Article  CAS  PubMed  Google Scholar 

  • Forrester D, Bauhus J, Cowie A (2005) On the success and failure of mixed-species tree plantations: lessons learned from a model system of and. For Ecol Manag 209:147–155

    Article  Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL et al (2006) Mixed-species plantations of Eucalyptus with nitrogen-fixing trees: A review. For Ecol Manag 233:211–230

    Article  Google Scholar 

  • Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199

    Article  CAS  PubMed  Google Scholar 

  • Galiana A, Chaumont J, Diem HG et al (1990) Nitrogen-fixing potential of Acacia mangium and Acacia auriculiformis seedlings inoculated with Bradyrhizobium and Rhizobium spp. Biol Fertil Soils 9:261–267

    Article  Google Scholar 

  • Galiana A, Prin Y, Mallet B et al (1994) Inoculation of Acacia mangium with alginate beads containing selected Bradyrhizobium strains under field conditions: long-term effect on plant growth and persistence of the introduced strains in soil. Appl Environ Microbiol 60:3974–3980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gottel NR, Castro HF, Kerley M et al (2011) Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol 77:5934–5944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF et al (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Article  CAS  Google Scholar 

  • Konopka A (2009) What is microbial community ecology. ISME J 3:1223–1230

    Article  PubMed  Google Scholar 

  • Koutika LS, Epron D, Bouillet JP, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:1–12. https://doi.org/10.1007/s11104-014-2047-3

  • Laclau JP, Bouillet JP, Gonçalves JLM et al (2008) Mixed-species plantations of Acacia mangium and Eucalyptus grandis in Brazil. 1. Growth dynamics and aboveground net primary production. For Ecol Manag 255:3905–3917

    Article  Google Scholar 

  • Lan G, Li Y, Wu Z et al (2017) Soil bacterial diversity impacted by conversion of secondary forest to rubber or eucalyptus plantations: a case study of Hainan Island, South China. For Sci 63:87–93

    Google Scholar 

  • Le Roux C, Tentchev D, Prin Y et al (2009) Bradyrhizobia nodulating the Acacia mangium × A. auriculiformis interspecific hybrid are specific and differ from those associated with both parental species. Appl Environ Microbiol 75:7752–7759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Lin J, Pei C et al (2018) Variation of soil bacterial communities along a chronosequence of Eucalyptus plantation. Peer J 6:e5648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lozupone CA, Knight R (2007) Global patterns in bacterial diversity. Proc Natl Acad Sci 104:11436–11440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone C, Hamady M, Knight R (2006) UniFrac—an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7:371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mafia RG, Alfenas AC, Maffia LA et al (2009) Plant growth promoting rhizobacteria as agents in the biocontrol of eucalyptus mini-cutting rot. Trop Plant Pathol 34:10–17

    Article  Google Scholar 

  • Miguel PSB, de Oliveira MNV, Delvaux JC et al (2016) Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol 109:755–771

    CAS  Google Scholar 

  • Mitchell RJ, Hester AJ, Campbell CD et al (2010) Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Plant Soil 333:417–430

    Article  CAS  Google Scholar 

  • Paz ICP, Santin RCM, Guimarães AM et al (2012) Eucalyptus growth promotion by endophytic Bacillus spp. Genet Mol Res 11:3711–3720

    Article  CAS  PubMed  Google Scholar 

  • Pereira AP de A, Andrade PAM de, Bini D et al (2017) Shifts in the bacterial community composition along deep soil profiles in monospecific and mixed stands of Eucalyptus grandis and Acacia mangium. Kuramae EE (ed.). PLoS One 12:e0180371

    Google Scholar 

  • Pereira APA, Zagatto MRG, Brandani CB et al (2018) Acacia changes microbial indicators and increases C and N in soil organic fractions in intercropped eucalyptus plantations. Front Microbiol 9:1–13

    Article  Google Scholar 

  • Rachid CTCC, Balieiro FC, Peixoto RS et al (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes. Soil Biol Biochem 66:146–153

    Article  CAS  Google Scholar 

  • Rout ME (2014) The plant microbiome, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Sala VMR, Silveira APD, Cardoso EJBN (2007) Bactérias diazotróficas associadas a plantas não-leguminosas. In: Siveira APD, Freitas SS (eds) Micirobiota Do Solo e Qualidade Ambiental. Capinas, p 312

    Google Scholar 

  • Santos FM, Chaer GM, Diniz AR, Balieiro FC (2017) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. For Ecol Manag 384:110–121

    Article  Google Scholar 

  • Santos FM, Balieiro FC, Fontes MA, Chaer GM (2017) Understanding the enhanced litter decomposition of mixed-species plantations of Eucalyptus and Acacia mangium. Plant Soil 141–155

    Google Scholar 

  • Siles JA, Margesin R (2016) Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: what are the driving factors? Microb Ecol 72:207–220

    Article  PubMed  PubMed Central  Google Scholar 

  • Silveira ÉLD, Pereira RM, Scaquitto DC et al (2006) Bacterial diversity of soil under eucalyptus assessed by 16S rDNA sequencing analysis. Pesqui Agropecuária Bras 41:1507–1516

    Article  Google Scholar 

  • Soumare A, Sall SN, Sanon A et al (2016) Changes in soil pH, polyphenol content and microbial community mediated by Eucalyptus camaldulensis. Appl Ecol Environ Res 14:1–19

    Article  Google Scholar 

  • Strobel G, Daisy B, Castillo U et al (2004) Natural products from endophytic microorganisms. J Nat Prod 67:257–268

    Article  CAS  PubMed  Google Scholar 

  • Tchichelle SV, Mareschal L, Koutika LS, Epron D (2017) Biomass production, nitrogen accumulation and symbiotic nitrogen fixation in a mixed-species plantation of eucalypt and acacia on a nutrient-poor tropical soil. For Ecol Manag 403:103–111

    Article  Google Scholar 

  • Teixeira DA, Alfenas AC, Mafia RG et al (2007) Rhizobacterial promotion of eucalypt rooting and growth. Brazilian J Microbiol 38:118–123

    Article  Google Scholar 

  • van der Heijden MG, Bardgett RD, van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310

    Article  PubMed  Google Scholar 

  • Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet J-P, Gonçalves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR, Laclau J-P (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. For Ecol Manag 436:56–67

    Google Scholar 

  • Voigtlaender, M, Laclau JP, Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet JP (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352:99–111

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc Natl Acad Sci 5:6578–6583

    Article  Google Scholar 

  • Wu JP, Liu ZF, Sun YX et al (2013) Introduced Eucalyptus urophylla plantations change the composition of the soil microbial community in subtropical china. L Degrad Dev 24:400–406

    Article  Google Scholar 

  • Zagatto MRG et al (2019) Interactions between mesofauna, microbiological and chemical soil attributes in pure and intercropped Eucalyptus grandis and Acacia mangium plantations. For Ecol Manag 433:240–247

    Google Scholar 

  • Zhang D, Zhang J, Yang W et al (2012) Effects of afforestation with Eucalyptus grandis on soil physicochemical and microbiological properties. Soil Res 50:167

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32(5):723–735

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caio Tavora Coelho da Costa Rachid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rachid, C.T.C.d.C. (2020). Soil Bacterial Structure and Composition in Pure and Mixed Plantations of Eucalyptus spp. and Leguminous Trees. In: Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A. (eds) Mixed Plantations of Eucalyptus and Leguminous Trees. Springer, Cham. https://doi.org/10.1007/978-3-030-32365-3_5

Download citation

Publish with us

Policies and ethics