Skip to main content

Nutrient Cycling in Mixed-Forest Plantations

  • Chapter
  • First Online:
Mixed Plantations of Eucalyptus and Leguminous Trees

Abstract

A continuous supply of nutrients is necessary to maintain the tree growth in forest ecosystems. This continuous supply is maintained by nutrient cycling. In managed forests a large amount of nutrients is removed with the harvest. This fact opens the nutrient cycle, being necessary, in many cases, fertilizer application to ensure adequate nutrient supply for the trees. Our goal with this chapter is to compare the nutrient cycling of mixed forest (mainly Acacia with Eucalyptus) with monospecific plantation and natural vegetation (Atlantic Forest and Savannah). The introduction of nitrogen-fixing trees (NFTs) in monospecific eucalypt plantation can improve the capacity of the trees in obtain nutrients, mainly due to the atmospheric N2 fixation and by the wider soil exploration. Beyond that, the introduction of NFTs also accelerates the nutrient cycling, especially to P. These two facts reduce the dependence of mixed plantation on fertilizer application. However, the concentration of some nutrients in the acacia biomass is higher than in eucalypt biomass. Thus, if mixed plantations reach the same productivity of monospecific eucalypt plantation, an increase in the nutrient harvest output can occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews JA, Siccama TG, Vogt KA (1999) The effect of soil nutrient availability on retranslocation of Ca, Mg and K from senescing sapwood in Atlantic white cedar. Plant Soil 208(1):117–123. https://doi.org/10.1023/A:1004512317397

    Article  CAS  Google Scholar 

  • Attiwill PM, Adams MA (1993) Nutrient cycling in forests. New Phytol 124:561–582. https://doi.org/10.1111/j.1469-8137.1993.tb03847.x

    Article  CAS  Google Scholar 

  • Bachega LR, Bouillet JP, Piccolo MC, Saint-Andre L, Bouvet JM, Nouvellon Y, Gonçalves JLM, Robin A, Laclau J-P (2016) Decomposition of Eucalyptus grandis and Acacia mangium leaves and fine roots in tropical conditions did not meet the Home Field Advantage hypothesis. For Ecol Manag 359:33–43. https://doi.org/10.1016/j.foreco.2015.09.026

    Article  Google Scholar 

  • Barros LD, do Vale JF, Schaefer C, Mourão M (2009) Soil and water losses in Acacia mangium wild plantations and natural savanna in Roraima, northern Amazon. Rev Bras Ciênc Solo 33(2):447-454

    Google Scholar 

  • Binkley D (1992) Mixtures of nitrogen-fixing and non-nitrogen-fixing tree species. In: Cannell M, Malcolm D, Robertson P (eds) The ecology of mixed-species stands of trees. Blackwell Scientific, Oxford, pp 99–123

    Google Scholar 

  • Boerner REJ (1984) Foliar nutrient dynamics and nutrient use efficiency of 4 deciduous tree species in relation to site fertility. J Appl Ecol 21:1029–1040. https://doi.org/10.2307/2405065

    Article  Google Scholar 

  • Christina M, Nouvellon Y, Laclau J-P, Stape JL, Bouillet J-P, Lambais GR, le Maire G (2017) Importance of deep water uptake in tropical eucalypt forest. Functecol 31:509–519. https://doi.org/10.1111/1365-2435.12727

    Article  Google Scholar 

  • Cunha GM, Gama-Rodrigues AC, Costa G (2005) Nutrient cycling in a eucalypt plantation (Eucalyptus grandis W. Hill ex Maiden) in Northern Rio de Janeiro State. Rev Árvore 29:353–363. https://doi.org/10.1590/S0100-67622005000300002

    Article  CAS  Google Scholar 

  • Domingos M, Moraes RM, Vuono YS, Anselmo CE (1997) Produção de serapilheira e retorno de nutrientes em um trecho de Mata Atlântica secundária, na Reserva Biológica de Paranapiacaba, SP. Rev Bras Bot 20(1):91–96. https://doi.org/10.1590/S0100-84041997000100009

    Article  Google Scholar 

  • de Souza PA, de Mello WZ, da Silva JJN, Renato de A. R. Rodrigues, da Conceição MCG (2017) Atmospheric wet, dry and bulk deposition of inorganic nitrogen in the Rio de Janeiro State. Revista Virtual de Química 9(5):2052–2066

    Google Scholar 

  • du Toit B, Gush MB, Pryke JS, Samways MJ, Dovey SB (2014) Ecological impacts of biomass production at stand and landscape levels. In: Seifert T (ed) Bioenergy from wood, Chapter 10. Springer, Dordrecht, pp 211–236

    Chapter  Google Scholar 

  • Ferraz AV (2009) Ciclagem de nutrientes e metais pesados em plantios de Eucalyptus grandis adubados com lodos de esgoto produzidos em diferentes estações de tratamento da região metropolitana de São Paulo. In: Recursos Florestais. ESALQ - USP, p 122

    Google Scholar 

  • Forrester DI, Bauhus J, Cowie AL (2005) Nutrient cycling in a mixed-species plantation of Eucalyptus globulus and Acacia mearnsii. Can J Res 35:2942–2950. https://doi.org/10.1139/x05-214

    Article  Google Scholar 

  • Gama-Rodrigues AC, Barros NF (2002) Ciclagem de nutrientes em floresta natural e em plantios de eucalipto e de dandá no sudeste da Bahia, Brasil. Rev Árvore 26:193–207

    CAS  Google Scholar 

  • Germon A, Guerrini IA, Bordron B, Bouillet J-P, Nouvellon Y, GoncalvesJLM JC, Paula RR, Laclau J-P (2018) Consequences of mixing Acacia mangium and Eucalyptus grandis trees on soil exploration by fine-root down to a depth of 17 m. Plant Soil 424:203–220. https://doi.org/10.1007/s11104-017-3428-1

    Article  CAS  Google Scholar 

  • Godinho TD, Caldeira MVW, Caliman JP, Prezotti LC, Watzlawicks LF, Azevedo HCA, Rocha JHT (2013) Biomass, macronutrients and organic carbon in the litter in a section of submontane seasonal semideciduous forest, ES. Sci For 41(97):131–144

    Google Scholar 

  • Gonçalves JLM, Stape JL, Benedetti V, Fessel VAG, Gava JL (2000) Reflexos do cultivo mínimo e intensivo do solo em sua fertilidade e na nutrição das árvores. In: Gonçalves JLM, Benedetti V (eds) Nutrição e Fertilização Florestal. IPEF, Piracicaba, pp 1–58

    Google Scholar 

  • Gonçalves JLM, Alvares CA, Behling M, Alves JM, Pizzi GT, Angeli A (2014) Productivity of eucalypt plantations managed under high forest and coppice systems, depending on edaphoclimatic factors. Sci Forest 42(103):411–419

    Google Scholar 

  • Hodson ME, Langan SJ (1999) Considerations of uncertainty in setting critical loads of acidity of soils: the role of weathering rate determination. Environ Pollut106:73-81. doi:https://doi.org/10.1016/S0269-7491(99)00058-5

  • Klaminder J, Lucas RW, Futter MN, Bishop KH, Kohler SJ, Egnell G, Laudon H (2011) Silicate mineral weathering rate estimates: Are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting? For Ecol Manag 261:1–9. https://doi.org/10.1016/j.foreco.2010.09.040

    Article  Google Scholar 

  • Koseva IS, Watmough SA, Aherne J (2010) Estimating base cation weathering rates in Canadian forest soils using a simple texture-based model. Biogeochemistry 101:183–196. https://doi.org/10.1007/s10533-010-9506-6

    Article  Google Scholar 

  • Koutika LS, Epron D, Bouillet JP, Mareschal L (2014) Changes in N and C concentrations, soil acidity and P availability in tropical mixed acacia and eucalypt plantations on a nutrient-poor sandy soil. Plant Soil 379:205–216. https://doi.org/10.1007/s11104-014-2047-3

    Article  CAS  Google Scholar 

  • Laclau J-P, Ranger J, Gonçalves JLM, Maquere V, Krusche AV, M’Bou AT, Nouvellon Y, Saint-Andre L, Bouillet J-P, Piccolo MC, Deleporte P (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations Main features shown by intensive monitoring in Congo and Brazil. For Ecol Manag 259:1771–1785. https://doi.org/10.1016/j.foreco.2009.06.010

    Article  Google Scholar 

  • Laclau J-P, Da Silva EA, Lambais RG, Bernoux M, Le Maire G, Stape JL, Bouillet J-P, Gonçalves JLM, Jourdan C, Nouvellon Y (2013) Dynamics of soil exploration by fine roots down to a depth of 10 m throughout the entire rotation in Eucalyptus grandis plantations. Front Plant Sci 4:243. https://doi.org/10.3389/fpls.2013.00243

    Article  PubMed  PubMed Central  Google Scholar 

  • Lequy E, Calvaruso C, Conil S, Turpault MP (2014) Atmospheric particulate deposition in temperate deciduous forest ecosystems: Interactions with the canopy and nutrient inputs in two beech stands of Northeastern France. Sci Total Environ 487:206–215. https://doi.org/10.1016/j.scitotenv.2014.04.028

    Article  CAS  PubMed  Google Scholar 

  • Martins SG, Silva MLN, Curi N, Ferreira MM, Fonseca S, Marques J (2003) Soil and water losses by erosion in forest ecosystems in the region of Aracruz, state of Espírito Santo, Brazil. Rev Bras Ciênc Solo 27:395–403. https://doi.org/10.1590/S0100-06832003000300001

    Article  Google Scholar 

  • Melo VD, Correa GF, RibeiroAN MPA (2005) Kinetics of potassium and magnesium release from clay minerals of soils in the Triangulo Mineiro Region, Minas Gerais State, Brazil. Rev Bras Ciênc Solo 29(4):533–545. https://doi.org/10.1590/S0100-06832005000400006

    Article  CAS  Google Scholar 

  • Millard P, Proe MF (1993) Nitrogen uptake, partitioning and internal cycling in Picea sitchensis (Bong.) Carr. as influenced by nitrogen supply. New Phytol 125:113–119. https://doi.org/10.1111/j.1469-8137.1993.tb03869.x

    Article  CAS  Google Scholar 

  • Morellato LPC (1992) Nutrient cycling in two south-east Brazilian forests.1. litterfall and litter standing crop. J Trop Ecol 8:205–215

    Article  Google Scholar 

  • Nardoto GB, Bustamante MMD, Pinto AS, Klink CA (2006) Nutrient use efficiency at ecosystem and species level in savanna areas of Central Brazil and impacts of fire. J Trop Ecol 22:191–201. https://doi.org/10.1017/S0266467405002865

    Article  Google Scholar 

  • Nyaga JM, Cramer MD, Neff JC (2013) Atmospheric nutrient deposition to the west coast of South Africa. Atmos Environ 81:625–632. https://doi.org/10.1016/j.atmosenv.2013.09.021

    Article  CAS  Google Scholar 

  • Ouimet R, Duchesne L (2005) Base cation mineral weathering and total release rates from soils in three calibrated forest watersheds on the Canadian Boreal Shield. Can J Soil Sci 85:245–260. https://doi.org/10.4141/S04-061

    Article  CAS  Google Scholar 

  • Paula RR, Bouillet J-P, Trivelin PCO, Zeller B, Goncalves JLM, Nouvellon Y, Bouvet JM, Plassard C, Laclau J-P (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest. Soil Biol Biochem 91:99–108. https://doi.org/10.1016/j.soilbio.2015.08.017

    Article  CAS  Google Scholar 

  • Pereira MG, Menezes LFT, Schultz N (2008) Aporte e decomposição da serapilheira na Floresta Atlântica, Ilha da Marambaia, Mangaratiba, RJ. Ciênc Florestal 18(4):443–454. https://doi.org/10.5902/19805098428

    Article  Google Scholar 

  • Pimenta JA, Rossi LB, Domingues TJM, Cavalheiro AL, Bianchini E (2011) Litter production and nutrient cycling in a reforested area and a seasonal semideciduous forest in southern Brazil. Acta Bot Bras 25:53–57. https://doi.org/10.1590/S0102-33062011000100008

    Article  Google Scholar 

  • Pinto SI, Martins SV, Barros NF, Teixeira DHC (2009) Nutrient cycling in two sites of semideciduous forest in mata do Paraíso forest reserve in Viçosa, MG, Brazil. Rev Árvore 33(4):653–663

    Article  CAS  Google Scholar 

  • Pugnaire FI, Chapin FS (1993) Controls over nutrient resorption from leaves of evergreen Mediterranean species. Ecology 74:124–129. https://doi.org/10.2307/1939507

    Article  Google Scholar 

  • Ranger J, Turpault MP (1999) Input-output nutrient budgets as a diagnostic tool for sustainable forest management. For Ecol Manag 122:139–154. https://doi.org/10.1016/S0378-1127(99)00038-9

    Article  Google Scholar 

  • Rocha JHT (2017) Manejo de resíduos florestais e deficiência nutricional em duas rotações de cultivo de eucalipto. In: Recursos Florestais Escola Superior de Agricultura "Luiz de Queiroz". Universidade de São Paulo, Piracicaba, p 173

    Google Scholar 

  • Rocha JHT, du Toit B, Gonçalves JLM (2019) Ca and Mg nutrition and its application in Eucalyptus and Pinus plantations. Forest Ecololgy Management 442:63–78. https://doi.org/10.1016/j.foreco.2019.03.062

    Article  Google Scholar 

  • Santos FM, Balieiro FD, Ataide DHD, Diniz AR, Chaer GM (2016) Dynamics of aboveground biomass accumulation in monospecific and mixed-species plantations of Eucalyptus and Acacia on a Brazilian sandy soil. For Ecol Manag 363:86–97. https://doi.org/10.1016/j.foreco.2015.12.028

    Article  Google Scholar 

  • Santos FM, Chaer GM, Diniz AR, Balieiro FD (2017) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil. For Ecol Manag 384:110–121. https://doi.org/10.1016/j.foreco.2016.10.041

    Article  Google Scholar 

  • Silva PHM (2006) Produção de madeira, ciclagem de nutrientes e fertilidade do solo em plantios de Eucalyptus grandis, após aplicação de lodo de esgoto. In: Ciências Florestais. ESALQ-USP, Piracicaba, p 118

    Google Scholar 

  • Silva MA, Silva MLN, Curi N, Avanzi JC, Leite FP (2011) Management systems in the eucalypt forest plantations and the soil and water losses in vale do rio doce, MG state. Ciênc Florest 21:765–776. https://doi.org/10.5902/198050984520

    Article  Google Scholar 

  • Silva PHM, Poggiani F, Libardi PL, Gonçalves AN (2013) Fertilizer management of eucalypt plantations on sandy soil in Brazil: Initial growth and nutrient cycling. For Ecol Manag 301:67–78. https://doi.org/10.1016/j.foreco.2012.10.033

    Article  Google Scholar 

  • Starr M, Lindroos AJ (2006) Changes in the rate of release of Ca and Mg and normative mineralogy due to weathering along a 5300-year chronosequence of boreal forest soils. Geoderma 133:269–280. https://doi.org/10.1016/j.geoderma.2005.07.013

    Article  CAS  Google Scholar 

  • Starr M, Lindroos AJ, Ukonmaanaho L (2014) Weathering release rates of base cations from soils within a boreal forested catchment: variation and comparison to deposition, litterfall and leaching fluxes. Environ Earth Sci 72:5101–5111. https://doi.org/10.1007/s12665-014-3381-8

    Article  CAS  Google Scholar 

  • Toledo LO, Pereira MG, Menezes CEG (2002) Produção de serapilheira e transferência de nutrientes em florestas secundárias localizadas na região de Pinheiral, RJ. Ciên Florestal 12(2):9–16

    Article  Google Scholar 

  • Vital ART, Guerrini IA, Franken WK, Fonseca RCB (2004) Produção de serapilheira e ciclagem de nutrientes de uma Floresta Estacional Semidecidual em zona ripária. Rev Árvore 8:793–800. https://doi.org/10.1590/S0100-67622004000600004

    Article  Google Scholar 

  • Vital ART, Lima WP, Camargo FRA (1999) Efeitos do corte raso de plantação de Eucalyptus sobre o balanço hídrico, a qualidade da água e as perdas de solo e de nutrientes em uma microbacia no vale do Paraíba, SP. Sci For 55:5–16

    Google Scholar 

  • Voigtlaender M, Laclau J-P, Gonçalves JLM, Piccolo MC, Moreira MZ, Nouvellon Y, Ranger J, Bouillet J-P (2012) Introducing Acacia mangium trees in Eucalyptus grandis plantations: Consequences for soil organic matter stocks and nitrogen mineralization. Plant Soil 352:99–111. https://doi.org/10.1007/s11104-011-0982-9

    Article  CAS  Google Scholar 

  • Voigtlaender M, Brandani CB, Caldeira DRM, Tardy F, Bouillet J-P, Gonçalves JLM, Moreira MZ, Leite FP, Brunet D, Paula RR, Laclau J-P (2019) Nitrogen cycling in monospecific and mixed-species plantations of Acacia mangium and Eucalyptus at 4 sites in Brazil. For Ecol Manag 43:56–67. https://doi.org/10.1016/j.foreco.2018.12.055

    Article  Google Scholar 

  • Whitfield CJ, Watmough SA, Aherne J, Dillon PJ (2006) A comparison of weathering rates for acid-sensitive catchments in Nova Scotia, Canada and their impact on critical load calculations. Geoderma 136:899–911. https://doi.org/10.1016/j.geoderma.2006.06.004

    Article  CAS  Google Scholar 

  • Whitfield CJ, Watmough SA, Aherne J (2011) Evaluation of elemental depletion weathering rate estimation methods on acid-sensitive soils of northeastern Alberta, Canada. Geoderma 166:189–197. https://doi.org/10.1016/j.geoderma.2011.07.029

    Article  CAS  Google Scholar 

  • Wieder RK, Vile MA, Albright CM, Scott KD, Vitt DH, Quinn JC, Burke-Scoll M (2016) Effects of altered atmospheric nutrient deposition from Alberta oil sands development on Sphagnum fuscum growth and C, N and S accumulation in peat. Biogeochemistry 129:1–19. https://doi.org/10.1007/s10533-016-0216-6

    Article  CAS  Google Scholar 

  • Zaia FC, Gama-Rodrigues AC (2004) Nutrient cycling and balance in eucalypt plantation systems in north of Rio de Janeiro state, Brazil. Rev Bras Ciênc Solo 28:843–852

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rocha, J.H.T., Gonçalves, J.L.d.M., Ferraz, A.d.V. (2020). Nutrient Cycling in Mixed-Forest Plantations. In: Bran Nogueira Cardoso, E., Gonçalves, J., Balieiro, F., Franco, A. (eds) Mixed Plantations of Eucalyptus and Leguminous Trees. Springer, Cham. https://doi.org/10.1007/978-3-030-32365-3_3

Download citation

Publish with us

Policies and ethics