Skip to main content

Strong Interactions for Precision Nuclear Physics

  • Conference paper
  • First Online:
Recent Progress in Few-Body Physics (FB22 2018)

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 238))

Included in the following conference series:

  • 1050 Accesses

Abstract

One of the key challenges in ab initio nuclear theory is to understand the emergence of nuclear structure from quantum chromodynamics. I will address this challenge and focus on the statistical aspects of uncertainty quantification and parameter estimation in chiral effective field theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beane, S.R., Detmold, W., Orginos, K., Savage, M.J.: Nuclear physics from lattice QCD. Prog. Part. Nucl. Phys. 66(1), 1–40 (2011)

    Article  ADS  Google Scholar 

  2. Weinberg, Steven: Effective chiral Lagrangians for nucleon—pion interactions and nuclear forces. Nucl. Phys. B 363, 3–18 (1991)

    Article  ADS  Google Scholar 

  3. Chang, C.C., Nicholson, A.N., Rinaldi, E., et al.: A per-cent-level determination of the nucleon axial coupling from quantum chromodynamics. Nat. Publ. Group 558(7708), 91–94 (2018)

    Google Scholar 

  4. Bedaque, P.F., Van Kolck, U.: Effective field theory for few-nucleon systems. Annu. Rev. Nucl. Part. Sci. 52(1), 339–396 (2002)

    Article  ADS  Google Scholar 

  5. Epelbaum, E., Hammer, H.-W., Meißner, U.-G.: Modern theory of nuclear forces. Rev. Mod. Phys. 81, 1773–1825 (2009)

    Article  ADS  Google Scholar 

  6. Machleidt, R., Entem, D.R.: Chiral effective field theory and nuclear forces. Phys. Rep. 503, 1–75 (2011)

    Article  ADS  Google Scholar 

  7. Nogga, A., Timmermans, R.G.E., van Kolck, U.: Renormalization of one-pion exchange and power counting. Phys. Rev. C 72, 054006 (2005)

    Article  ADS  Google Scholar 

  8. Phillips, D.R. Recent results in chiral effective field theory for the NN system. PoS CD12, 172 (2013)

    Google Scholar 

  9. Griehammer, H.W.: Assessing theory uncertainties in EFT power countings from residual cutoff dependence. PoS CD15, 104 (2016)

    Google Scholar 

  10. Epelbaum, E., Meissner, U.G.: on the renormalization of the one-pion exchange potential and the consistency of Weinberg‘s power counting. Few Body Syst. 54, 2175–2190 (2013)

    Article  ADS  Google Scholar 

  11. Song, Y.-H., Lazauskas, R., van Kolck, U.: Triton binding energy and neutron-deuteron scattering up to next-to-leading order in chiral effective field theory. Phys. Rev. C 96, 024002 (2017)

    Google Scholar 

  12. Ekström, A., Baardsen, G., Forssén, C., et al.: Optimized chiral nucleon-nucleon interaction at next-to-next-to-leading order. Phys. Rev. Lett. 110(19), 192502 (2013)

    Article  ADS  Google Scholar 

  13. Carlsson, B.D., Ekström, A., Forssén, C., et al.: Uncertainty analysis and order-by-order optimization of chiral nuclear interactions. Phys. Rev. X 6(1), 011019 (2016)

    Google Scholar 

  14. Reinert, P., Krebs, H., Epelbaum, E.: Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order. Eur. Phys. J. A 54(5), 86 (2018)

    Article  ADS  Google Scholar 

  15. Schindler, M.R., Phillips, D.R.: Bayesian methods for parameter estimation in effective field theories. Ann. Phys. 324(3), 682–708 (2009)

    Article  ADS  MATH  Google Scholar 

  16. Wesolowski, S., Klco, N., Furnstahl, R.J., Phillips, D.R., Thapaliya, A.: Bayesian parameter estimation for effective field theories. J. Phys. G: Nucl. Part. Phys. 43(7), 074001 (2016)

    Article  ADS  Google Scholar 

  17. Dobaczewski, J., Nazarewicz, W., Reinhard, P.-G.: Error estimates of theoretical models: a guide. J. Phys. G: Nucl. Part. Phys. 41(7), 074001 (2014)

    Article  ADS  Google Scholar 

  18. Furnstahl, R.J., Klco, N., Phillips, D.R., et al.: Quantifying truncation errors in effective field theory. Phys. Rev. C 92(2), 024005 (2015)

    Article  ADS  Google Scholar 

  19. McDonnell, J.D., Schunck, N., Higdon, D., et al.: Uncertainty quantification for nuclear density functional theory and information content of new measurements. Phys. Rev. Lett. 114, 122501 (2015)

    Article  ADS  Google Scholar 

  20. Vernon, I., Goldstein, M., Bower, R.G.: Galaxy formation: a Bayesian uncertainty analysis. Bayesian Anal. 5(4), 619–669 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Neufcourt, L., Cao, Y., Nazarewicz, W., et al.: Neutron drip line in the ca region from bayesian model averaging. Phys. Rev. Lett. 122, 062502 (2019)

    Article  ADS  Google Scholar 

  22. Ekström, A., Carlsson, B.D., Wendt, K.A., et al.: Statistical uncertainties of a chiral interaction at next-to-next-to leading order. J. Phys. G: Nucl. Part. Phys. 42(3), 034003 (2015)

    Article  ADS  Google Scholar 

  23. Pérez, RN., Amaro, J.E., Arriola, ER., Maris, P., Vary, J.P.: Statistical error propagation in ab initio no-core full configuration calculations of light nuclei. Phys. Rev. C 92, 064003 (2015)

    Google Scholar 

  24. Barrett, B.R., Navrátil, P., Vary, J.P.: Ab initio no core shell model. Prog. Part. Nucl. Phys. 69, 131–181 (2013)

    Article  ADS  Google Scholar 

  25. Hagen, G., Papenbrock, T., Hjorth-Jensen, M., et al.: Coupled-cluster computations of atomic nuclei. Rept. Prog. Phys. 77(9), 096302 (2014)

    Article  ADS  Google Scholar 

  26. Hergert, H., Bogner, S.K., Morris, T.D., et al.: The in-medium similarity renormalization group: a novel ab initio method for nuclei. Phys. Rept. 621, 165–222 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lee, Dean: Lattice simulations for few and many-body systems. Prog. Part. Nucl. Phys. 63, 117–154 (2009)

    Article  ADS  Google Scholar 

  28. Hagen, G., Ekström, A., Forssén, C., et al.: Neutron and weak-charge distributions of the \(^{48}\)ca nucleus. Nat. Phys. 12(2), 186–190 (2016)

    Google Scholar 

  29. Hagen, G., Jansen, G.R., Papenbrock, T.: Structure of \(^{78}\)Ni from first principles computations. Phys. Rev. Lett. 117(17), 172501 (2016)

    Article  ADS  Google Scholar 

  30. Morris, T.D., Simonis, J., Stroberg, S.R., et al.: Structure of the lightest tin isotopes. Phys. Rev. Lett. 120, 152503 (2018)

    Article  ADS  Google Scholar 

  31. Lapoux, V., Somà, V., Barbieri, C., et al.: Radii and binding energies in oxygen isotopes: achallenge for nuclear forces. Phys. Rev. Lett. 117, 052501 (2016)

    Article  ADS  Google Scholar 

  32. Entem, D.R., Machleidt, R.: Accurate charge dependent nucleon nucleon potential at fourth order of chiral perturbation theory. Phys. Rev. C 68, 041001 (2003)

    ADS  Google Scholar 

  33. Wiringa, R.B., Stoks, V.G.J., Schiavilla, R.: An accurate nucleon-nucleon potential with charge independence breaking. Phys. Rev. C 51, 38–51 (1995)

    Google Scholar 

  34. Machleidt, R.: The high precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn). Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  35. Binder, S., Langhammer, J., Calci, A., et al.: Ab initio path to heavy nuclei. Phys. Lett. B 736(C), 119–123 (2014)

    Article  ADS  Google Scholar 

  36. Ekström, A., Jansen, G.R., Wendt, K.A., et al.: Accurate nuclear radii and binding energies from a chiral interaction. Phys. Rev. C 91(5), 051301 (2015)

    Article  ADS  Google Scholar 

  37. Drischler, C., Hebeler, K., Schwenk, A.: Chiral interactions up to next-to-next-to-next-to-leading order and nuclear saturation. Phys. Rev. Lett. 122, 042501 (2019)

    Article  ADS  Google Scholar 

  38. Stump, D., Pumplin, J., Brock, R., et al.: Uncertainties of predictions from parton distribution functions. I. the lagrange multiplier method. Phys. Rev. D, 65(1), 014012 (2001)

    Google Scholar 

  39. Wesolowski, S., Furnstahl, R., Melendez, J.A., et al.: Exploring Bayesian parameter estimation for chiral effective field theory using nucleon-nucleon phase shifts. J. Phys. G: Nucl. Part. Phys. (2018)

    Google Scholar 

  40. Hernandez, O.J. Ekström, A., Dinur, N.N., et al.: The deuteron-radius puzzle is alive: a new analysis of nuclear structure uncertainties. Phys. Lett. B 778, 377–383 (2018)

    Article  ADS  Google Scholar 

  41. Gazda, D., Catena, R., Forssén, C.: Ab initio nuclear response functions for dark matter searches. Phys. Rev. D 95, 103011 (2017)

    Article  ADS  Google Scholar 

  42. Epelbaum, E., Krebs, H., Meißner, U.-G.: Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order. Eur. Phys. J. A 51(5), 53 (2015)

    Article  ADS  Google Scholar 

  43. Cacciari, M., Houdeau, N.: Meaningful characterisation of perturbative theoretical uncertainties. J. High Energy Phys. 2011(9), 39 (2011)

    Article  Google Scholar 

  44. Acharya, B., Ekström, A., Platter, Lucas: Effective-field-theory predictions of the muon-deuteron capture rate. Phys. Rev. C 98, 065506 (2018)

    Article  ADS  Google Scholar 

  45. Hoferichter, M., de Elvira, J.R., Kubis, B., Meiner, U.-G.: Roysteiner-equation analysis of pionnucleon scattering. Phys. Rep. 625, 1–88 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  46. Wild, S.M.: Solving derivative-free nonlinear least squares problems with POUNDERS. In: Terlaky, T., Anjos, M.F., Ahmed, S. (eds.) Advances and trends in optimization with engineering applications, pp. 529–540. SIAM (2017)

    Google Scholar 

  47. Hagen, G., et al.: Neutron and weak-charge distributions of the \(^{48}\)Ca nucleus. Nature Phys. 12(2), 186–190 (2015)

    Article  ADS  Google Scholar 

  48. Ekström, A., Hagen, G., Morris, T.D., et al.: \(\Delta \) isobars and nuclear saturation. Phys. Rev. C 97(2), 024332 (2018)

    Article  ADS  Google Scholar 

  49. Piarulli, M., Girlanda, L., Schiavilla, R., et al.: Minimally nonlocal nucleon-nucleon potentials with chiral two-pion exchange including \(\Delta \) resonances. Phys. Rev. C 91(2), 024003 (2015)

    Article  ADS  Google Scholar 

  50. Piarulli, M., et al.: Light-nuclei spectra from chiral dynamics. Phys. Rev. Lett. 120(5), 052503 (2017)

    Article  ADS  Google Scholar 

  51. Logoteta, D., Bombaci, I., Kievsky, A.: Nuclear matter properties from local chiral interactions with \(\rm \Delta \) isobar intermediate states. Phys. Rev. C 94, 064001 (2016)

    Article  ADS  Google Scholar 

  52. van Kolck, U.: Few nucleon forces from chiral Lagrangians. Phys. Rev. C 49, 2932–2941 (1994)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank all my collaborators for sharing their insights during our joint work on the range of topics presented here. This work has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 758027) and the Swedish Research Council under Grant No. 2015-00225 and Marie Sklodowska Curie Actions, Cofund, Project INCA 600398.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Ekström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ekström, A. (2020). Strong Interactions for Precision Nuclear Physics. In: Orr, N., Ploszajczak, M., Marqués, F., Carbonell, J. (eds) Recent Progress in Few-Body Physics. FB22 2018. Springer Proceedings in Physics, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-32357-8_90

Download citation

Publish with us

Policies and ethics