Skip to main content

Precision Calculations for Three-Body Molecular Bound States

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 238))

Abstract

Although they do not lend themselves to analytical resolution, three-body atomic or molecular systems are still simple enough to allow for very precise theoretical predictions of their energy levels, which makes them attractive candidates for fundamental tests and determination of fundamental physical constants. Focusing on the hydrogen molecular ions (H\(_2^+\), HD\(^+\), D\(_2^+\)), we outline the methods which have been used to improve the theoretical accuracy by several orders of magnitude over the last two decades. The three-body Schrödinger equation can be solved with extreme precision by variational methods with trial functions involving exponentials of interparticle distances. Quantum electrodynamics (QED) corrections are evaluated in the framework of nonrelativistic QED (NRQED). The current status of theory and possibilities of further improvement are briefly sketched.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mohr, P.J., et al.: Rev. Mod. Phys. 88, 035009 (2016)

    Article  ADS  Google Scholar 

  2. Beyer, A., et al.: Science 358, 79 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Fleurbaey, H., et al.: Phys. Rev. Lett. 120, 183001 (2018)

    Article  ADS  Google Scholar 

  4. Antognini, A., et al.: Science 339, 417 (2013)

    Article  ADS  Google Scholar 

  5. Arrington, J., Sick, I.: J. Phys. Chem. Ref. Data 44, 031204 (2015)

    Article  ADS  Google Scholar 

  6. Hori, M., et al.: Science 354, 610 (2016)

    Article  ADS  Google Scholar 

  7. Hori, M., et al.: Phys. Rev. A 89, 042515 (2014)

    Article  ADS  Google Scholar 

  8. Zheng, X., et al.: Phys. Rev. Lett. 119, 263002 (2017)

    Article  ADS  Google Scholar 

  9. Rengelink, R.J., et al.: Nat. Phys. 14, 1132 (2018)

    Article  Google Scholar 

  10. Antognini, A., et al.: EPJ Web Conf. 113, 01006 (2016)

    Article  Google Scholar 

  11. Pachucki, K., et al.: Phys. Rev. A 95, 062510 (2017)

    Article  ADS  Google Scholar 

  12. Biesheuvel, J., et al.: Nat. Commun. 7, 10385 (2016)

    Article  ADS  Google Scholar 

  13. Alighanbari, S., et al.: Nat. Phys. 14, 555 (2018)

    Article  Google Scholar 

  14. Karr, J-Ph, et al.: J. Phys. Conf. Ser. 723, 012048 (2016)

    Article  Google Scholar 

  15. Karr, J-Ph, et al.: Phys. Rev. A 94, 050501(R) (2016)

    Article  ADS  Google Scholar 

  16. Myers, E.G.: Phys. Rev. A 98, 010101 (2018)

    Article  ADS  Google Scholar 

  17. Bishop, D.M., Cheung, L.M.: Phys. Rev. A 16, 640 (1977)

    Article  ADS  Google Scholar 

  18. Wing, W.H., et al.: Phys. Rev. Lett. 36, 1488 (1976)

    Article  ADS  Google Scholar 

  19. Korobov, V.I.: Phys. Rev. A 61, 064503 (2000)

    Article  ADS  Google Scholar 

  20. Bailey, D.H., Frolov, A.M.: J. Phys. B At. Mol. Opt. Phys. 35, 4287 (2002)

    Article  ADS  Google Scholar 

  21. Cassar, M.M., Drake, G.W.F.: J. Phys. B At. Mol. Opt. Phys. 37, 2485 (2004)

    Article  ADS  Google Scholar 

  22. Li, H., et al.: Phys. Rev. A 75, 012504 (2007)

    Article  ADS  Google Scholar 

  23. Ning, Y., Yan, Z.-C.: Phys. Rev. A 90, 032516 (2014)

    Article  ADS  Google Scholar 

  24. Schwartz, C.: Phys. Rev. 123, 1700 (1961)

    Article  ADS  Google Scholar 

  25. Moss, R.E.: Mol. Phys. 80, 1541 (1993)

    Article  ADS  Google Scholar 

  26. Grémaud, B., et al.: J. Phys. B At. Mol. Opt. Phys. 31, 383 (1998)

    Article  ADS  Google Scholar 

  27. Moss, R.E.: J. Phys. B At. Mol. Opt. Phys. 32, L89 (1999)

    Article  ADS  Google Scholar 

  28. Hilico, L., et al.: Eur. Phys. J. D 12, 449 (2000)

    Article  ADS  Google Scholar 

  29. Hijikata, Y., et al.: J. Chem. Phys. 130, 024102 (2009)

    Article  ADS  Google Scholar 

  30. Drake, G.W.F. (ed.): Springer handbook of atomic, molecular, and optical physics, 2nd edn. Springer, Berlin (2006)

    Google Scholar 

  31. Hylleraas, E.A., Undheim, B.: Z. Phys. 65, 759 (1930)

    Article  ADS  Google Scholar 

  32. MacDonald, J.K.L.: Phys. Rev. 43, 830 (1933)

    Article  ADS  Google Scholar 

  33. Korobov, V.I.: J. Phys. B At. Mol. Opt. Phys. 35, 1959 (2002)

    Article  ADS  Google Scholar 

  34. Harris, F.E., et al.: J. Chem. Phys. 121, 6323 (2004)

    Article  ADS  Google Scholar 

  35. Korobov, V.I.: Mol. Phys. 116, 93 (2017)

    Article  ADS  Google Scholar 

  36. Caswell, W., Lepage, G.: Phys. Lett. B 167, 437 (1986)

    Article  ADS  Google Scholar 

  37. Kinoshita, T., Nio, M.: Phys. Rev. D 53, 4909 (1996)

    Article  ADS  Google Scholar 

  38. Pachucki, K.: Phys. Rev. A 71, 012503 (2005)

    Article  ADS  Google Scholar 

  39. Jentschura, U.D., et al.: Phys. Rev. A 72, 062102 (2005)

    Article  ADS  Google Scholar 

  40. Korobov, V.I., et al.: Phys. Rev. A 74, 040502(R) (2006)

    Article  ADS  Google Scholar 

  41. Hill, R.J., et al.: Phys. Rev. D 87, 053017 (2013)

    Article  ADS  Google Scholar 

  42. Korobov, V.I.: Phys. Rev. A 74, 052506 (2006)

    Article  ADS  Google Scholar 

  43. Korobov, V.I.: Phys. Rev. A 85, 042514 (2012)

    Article  ADS  Google Scholar 

  44. Korobov, V.I.: Phys. Rev. A 77, 022509 (2008)

    Article  ADS  Google Scholar 

  45. Korobov, V.I., et al.: Phys. Rev. A 89, 032511 (2014)

    Article  ADS  Google Scholar 

  46. Korobov, V.I., et al.: Phys. Rev. Lett. 118, 233001 (2017)

    Article  ADS  Google Scholar 

  47. Bakalov, D., et al.: Phys. Rev. Lett. 97, 243001 (2006)

    Article  ADS  Google Scholar 

  48. Korobov, V.I., et al.: Phys. Rev. A 79, 012501 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  49. Zhong, Z.-X., et al.: Phys. Rev. A 98, 032502 (2018)

    Article  ADS  Google Scholar 

  50. Jentschura, U.D., et al.: Phys. Rev. Lett. 82, 53 (1999)

    Article  ADS  Google Scholar 

  51. Jentschura, U.D., et al.: Phys. Rev. A 63, 042512 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Karr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karr, JP., Haidar, M., Hilico, L., Korobov, V.I. (2020). Precision Calculations for Three-Body Molecular Bound States. In: Orr, N., Ploszajczak, M., Marqués, F., Carbonell, J. (eds) Recent Progress in Few-Body Physics. FB22 2018. Springer Proceedings in Physics, vol 238. Springer, Cham. https://doi.org/10.1007/978-3-030-32357-8_14

Download citation

Publish with us

Policies and ethics