Advertisement

Neutron Matter in the Unitary Limit with Implicit Renormalization of Short Range Interactions

  • E. Ruiz Arriola
  • S. Szpigel
  • V. S. TimóteoEmail author
Conference paper
  • 341 Downloads
Part of the Springer Proceedings in Physics book series (SPPHY, volume 238)

Abstract

We study a strongly interacting many-fermion system in the unitary limit using an implicit renormalization framework and compute the Bertsch parameter \(\xi \) considering only contact interactions. The main ingredient of the calculation is the scale separation between low and high momentum degrees of freedom, which we take as the Fermi momentum \(k_\mathrm{F}\), and the assumption that the physics below this momentum scale can be re-parametrized into the low energy coefficients of the contact interactions. Once the unitary renormalization conditions are imposed on the two-body scattering amplitude obtained from the contact interactions, we evaluate \(\xi \) at leading order (LO), next-to-leading order (NLO) and next-to-next-to-leading order (NNLO).

Notes

Acknowledgements

Work supported by Spanish MINECO and European FEDER funds (grants FIS2014-59386-P and FIS2017-85053-C2-1-P), Junta de Andalucía (grant FQM-225), FAPESP (grant 2016/07061-3) and CNPq (grant 306195/2015-1).

References

  1. 1.
    Carlson, J., Chang, S.-Y., Pandharipande, V.R., Schmidt, K.E.: Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Carlson, J., Gandolfi, S., Gezerlis, A.: Quantum Monte Carlo approaches to nuclear and atomic physics. Prog. Theor. Exp. Phys., 01A209 (2012)Google Scholar
  3. 3.
    Ruiz Arriola, E., Szpigel, S., Timóteo, V. S.: Implicit versus explicit renormalization and effective interactions. Phys. Lett. B 728, 596–601 (2014)Google Scholar
  4. 4.
    Ruiz Arriola, E., Szpigel, S., Timóteo, V. S.: Implicit and explicit renormalization: two complementary views of effective interactions. Ann. Phys. 353, 129–149 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Carlson, J., Gandolfi, S., Schmidt, E., Zhang, S.: Auxiliary-field quantum Monte Carlo method for strongly paired fermions. Phys. Rev. A 84, 061602(R) (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Forbes, M.M., Gandolfi, S., Gezerlis, A.: Effective-range dependence of resonantly interacting fermions. Phys. Rev. A 86, 053603 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    Schonenberg, L.M., Conduit, G.J.: Effective-range dependence of resonant Fermi gases. Phys. Rev. A 95, 013633 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    Ku, M.J.H., Sommer, A.T., Cheuk, L.W., Zwierlein, M.W.: Revealing the superfluid lambda transition in the universal thermodynamics of a unitary Fermi gas. Science 335, 563 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Zürn, G., Lompe, T., Wenz, A.N., Jochin, S., Julienne, P., Hutson, J.M.: Precise characterization of \(^6Li\) Feshbach resonances using trap-sideband-resolved RF spectroscopy of weakly bound molecules. Phys. Rev. Lett. 110, 135301 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Departamento de Física Atómica, Molecular Y Nuclear, Facultad de CienciasUniversidad de Granada - UGRGranadaSpain
  2. 2.Centro de Rádio-Astronomia e Astrofísica Mackenzie - CRAAMUniversidade Presbiteriana MackenzieSão PauloBrazil
  3. 3.Grupo de Óptica e Modelagem Numérica - GOMNI, Faculdade de Tecnologia - FTUniversidade Estadual de Campinas - UNICAMPLimeiraBrazil

Personalised recommendations