Skip to main content

Regularity of Maximal Operators: Recent Progress and Some Open Problems

  • Chapter
  • First Online:
New Trends in Applied Harmonic Analysis, Volume 2

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This is an expository paper on the regularity theory of maximal operators, when these act on Sobolev and BV functions, with a special focus on some of the current open problems in the topic. Overall, a list of fifteen research problems is presented. It summarizes the contents of a talk delivered by the author in the CIMPA 2017 Research School—Harmonic Analysis, Geometric Measure Theory, and Applications, in Buenos Aires, Argentina.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.M. Aldaz, J. Pérez Lázaro, Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Amer. Math. Soc. 359(5), 2443–2461 (2007)

    Article  MathSciNet  Google Scholar 

  2. S. Barza, M. Lind, A new variational characterization of Sobolev spaces. J. Geom. Anal. 25(4), 2185–2195 (2015)

    Article  MathSciNet  Google Scholar 

  3. D. Beltran, J.P. Ramos, O. Saari, Regularity of fractional maximal functions through Fourier multipliers. J. Funct. Anal. 276 (6), 1875–1892 (2019)

    Article  MathSciNet  Google Scholar 

  4. J. Bober, E. Carneiro, K. Hughes, L.B. Pierce, On a discrete version of Tanaka’s theorem for maximal functions. Proc. Am. Math. Soc. 140, 1669–1680 (2012)

    Article  MathSciNet  Google Scholar 

  5. J. Bourgain, Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)

    Article  MathSciNet  Google Scholar 

  6. H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Universitext. Springer, New York, 2011)

    MATH  Google Scholar 

  7. E. Carneiro, R. Finder, M. Sousa, On the variation of maximal operators of convolution type II, Rev. Mat. Iberoam. 34(2), 739–766 (2018)

    Article  MathSciNet  Google Scholar 

  8. E. Carneiro, K. Hughes, On the endpoint regularity of discrete maximal operators. Math. Res. Lett. 19(6), 1245–1262 (2012)

    Article  MathSciNet  Google Scholar 

  9. E. Carneiro, J. Madrid, Derivative bounds for fractional maximal functions. Trans. Am. Math. Soc. 369(6), 4063–4092 (2017)

    Article  MathSciNet  Google Scholar 

  10. E. Carneiro, J. Madrid, L.B. Pierce, Endpoint Sobolev and BV continuity for maximal operators. J. Funct. Anal. 273, 3262–3294 (2017)

    Article  MathSciNet  Google Scholar 

  11. E. Carneiro, D. Moreira, On the regularity of maximal operators. Proc. Am. Math. Soc. 136(12), 4395–4404 (2008)

    Article  MathSciNet  Google Scholar 

  12. E. Carneiro, B.F. Svaiter, On the variation of maximal operators of convolution type. J. Funct. Anal. 265, 837–865 (2013)

    Article  MathSciNet  Google Scholar 

  13. L.C. Evans, R.F. Gariepy, Measure theory and fine properties of functions, Studies in Advanced Mathematics (CRC Press, Boca Raton, FL, 1992)

    MATH  Google Scholar 

  14. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin, 1983)

    Book  Google Scholar 

  15. P. Hajłasz, J. Malý, On approximate differentiability of the maximal function. Proc. Am. Math. Soc. 138, 165–174 (2010)

    Article  MathSciNet  Google Scholar 

  16. P. Hajłasz, J. Onninen, On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29(1), 167–176 (2004)

    MathSciNet  MATH  Google Scholar 

  17. J. Kinnunen, The Hardy-Littlewood maximal function of a Sobolev function. Israel J. Math. 100, 117–124 (1997)

    Article  MathSciNet  Google Scholar 

  18. J. Kinnunen, P. Lindqvist, The derivative of the maximal function. J. Reine Angew. Math. 503, 161–167 (1998)

    MathSciNet  MATH  Google Scholar 

  19. J. Kinnunen, E. Saksman, Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35(4), 529–535 (2003)

    Article  MathSciNet  Google Scholar 

  20. S. Korry, A class of bounded operators on Sobolev spaces. Arch. Math. (Basel) 82(1), 40–50 (2004)

    Article  MathSciNet  Google Scholar 

  21. O. Kurka, On the variation of the Hardy-Littlewood maximal function. Ann. Acad. Sci. Fenn. Math. 40, 109–133 (2015)

    Article  MathSciNet  Google Scholar 

  22. E. Lieb, M. Loss, Analysis, Graduate Studies in Mathematics, vol. 14, 2nd edn. (American Mathematical Society, Providence, RI, 2001)

    Google Scholar 

  23. F. Liu, T. Chen, H. Wu, A note on the endpoint regularity of the Hardy-Littlewood maximal functions. Bull. Aust. Math. Soc. 94(1), 121–130 (2016)

    Article  MathSciNet  Google Scholar 

  24. F. Liu, H. Wu, On the regularity of the multisublinear maximal functions. Canad. Math. Bull. 58(4), 808–817 (2015)

    Article  MathSciNet  Google Scholar 

  25. S. Lang, Algebraic Number Theory (Addison-Wesley Publishing Co., Inc., 1970)

    Google Scholar 

  26. H. Luiro, Continuity of the maximal operator in Sobolev spaces. Proc. Am. Math. Soc. 135(1), 243–251 (2007)

    Article  MathSciNet  Google Scholar 

  27. H. Luiro, On the regularity of the Hardy-Littlewood maximal operator on subdomains of \(\mathbb{R}^n\), Proc. Edinb. Math. Soc. 53(1), 211–237 (2010). 2nd edn

    Google Scholar 

  28. H. Luiro, The variation of the maximal function of a radial function. Ark. Mat. 56(1), 147–161 (2018)

    Article  MathSciNet  Google Scholar 

  29. H. Luiro, J. Madrid, The variation of the fractional maximal function of a radial function. Int. Math. Res. Not. IMRN 17 5284–5298 (2019)

    Article  MathSciNet  Google Scholar 

  30. J. Madrid, Sharp inequalities for the variation of the discrete maximal function. Bull. Aust. Math. Soc. 95(1), 94–107 (2017)

    Article  MathSciNet  Google Scholar 

  31. J. Madrid, Endpoint Sobolev and BV continuity for maximal operators, II. to appear in Rev. Mat. Iberoam

    Google Scholar 

  32. I.P. Natanson, Theory of Functions of a Real Variable (Frederick Ungar Publishing Co., New York, 1950)

    Google Scholar 

  33. C. Pérez, T. Picon, O. Saari, M. Sousa, Regularity of maximal functions on Hardy-Sobolev spaces. Bull. Lond. Math. Soc. 50(6), 1007–1015 (2018)

    Article  MathSciNet  Google Scholar 

  34. J.P. Ramos, Sharp total variation results for maximal functions. Ann. Acad. Sci. Fenn. Math. 44(1), 41–64 (2019)

    Article  MathSciNet  Google Scholar 

  35. O. Saari, Poincaré inequalities for the maximal function. Ann. Sc. Norm. Super. Pisa Cl. Sci. 5(3), 1065–1083 (2019)

    Article  MathSciNet  Google Scholar 

  36. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970)

    MATH  Google Scholar 

  37. E.M. Stein, Maximal functions. I. Spherical means, Proc. Natl. Acad. Sci. USA 73 2174–2175 (1976)

    Google Scholar 

  38. H. Tanaka, A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function. Bull. Austral. Math. Soc. 65(2), 253–258 (2002)

    Article  MathSciNet  Google Scholar 

  39. F. Temur, On regularity of the discrete Hardy-Littlewood maximal function. Preprint abs/1303.3993

Download references

Acknowledgements

The author acknowledges support from CNPq–Brazil grants 305612/2014-0 and 477218/2013-0, and FAPERJ grant E-26/103.010/2012. The author is thankful to José Madrid and João Pedro Ramos for reviewing the manuscript and providing valuable feedback. The author is also thankful to all of the members of the Scientific and Organizing Committees of the CIMPA 2017 Research School—Harmonic Analysis, Geometric Measure Theory and Applications, in Buenos Aires, Argentina, for the wonderful event.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Carneiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carneiro, E. (2019). Regularity of Maximal Operators: Recent Progress and Some Open Problems. In: Aldroubi, A., Cabrelli, C., Jaffard, S., Molter, U. (eds) New Trends in Applied Harmonic Analysis, Volume 2. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-32353-0_3

Download citation

Publish with us

Policies and ethics