By the mid-1980s, the UK’s Jodrell Bank 250 foot antenna had been upgraded several times with a new, more precise surface and a new precision pointing system which allowed operation at wavelengths as short as 6 cm. Meanwhile in Australia, the 210 foot dish had also been upgraded, in part with funds received from NASA to support the Apollo lunar program. Australian scientists were using the inner part of the dish at 1.3 cm wavelength to study interstellar water vapor and ammonia. In Canada, the National Research Council was operating a 150 foot fully steerable alt-az mounted dish which had a better surface than the 140 Foot Telescope. The most visible competition came from the Effelsberg 100 meter fully steerable antenna operated by the Max-Planck-Institut für Radio Astronomie in Bonn, Germany.
The New Large Steerable Radio Telescope Study
In September 1987, users of the 300 Foot Telescope and other radio astronomers gathered in Green Bank to celebrate 25 years of discoveries and to plan for future research programs. But with the still-unfinished VLBA construction and the growing interest at NRAO in millimeter astronomy, there appeared little prospect for the long-desired US 100 meter class fully steerable antenna of the kind that was envisioned when NRAO was formed in the 1950s.
At the suggestion of one of the present authors (KIK
), MIT Professor Bernard Burke, a longtime NRAO user, AUI Board member, and supporter of NRAO, wrote to NRAO Director Paul Vanden Bout, suggesting that NRAO explore the possibility of replacing the aging 140 Foot Telescope with its “antique” equatorial mount, inferior surface, poor pointing, and high maintenance cost. In a prescient remark, Burke noted that, “It would certainly be prudent to have the plans in readiness as soon as possible, should the proper occasion arise on short notice.” Burke suggested the formation of a working group at NRAO to examine the scientific motivation, size-wavelength trade-offs, and cost of a 140 Foot replacement telescope.Footnote 50 The most likely funding source identified by Burke was support of the space VLBI missions planned by Japan and the USSR. Unable to convince NASA to support an American-led space VLBI mission (Chap. 8), Burke and others speculated that NASA might be willing to fund the construction of the large ground-based radio telescope that would be needed to complement the necessarily small orbiting space antenna, but at a small fraction of the cost needed to deploy a space-based radio telescope for VLBI.
Vanden Bout responded by appointing a committee to formulate a scientific justification for a new large antenna, to address the tradeoffs between size and short wavelength limit, and to consider concepts that would reduce the construction and operating cost. Since NRAO was still building the VLBA and was committed to the construction of the Millimeter Array (Chaps. 8 and 10) as the next NSF-funded major NRAO project, Vanden Bout instructed the committee to consider sources of funding other than the National Science Foundation.Footnote 51 The committee was charged with reporting by the end of 1988. Unable to come up with a reasonable descriptive name for a telescope that had not yet been designed, as a spoof on the LFST project, the prospective new telescope was provisionally named the NLSRT, the New Large Steerable Radio Telescope, “because that is so bad that there is no danger that it will, by default, become the final name.”Footnote 52
The NLSRT Committee concentrated on antennas in the range of 70 meters to 120 meters that would operate with short wavelength limits from a few millimeters to a few centimeters wavelength with estimated costs of $5 to $50 million.
By November 1988, in anticipation of meeting the Director’s end of the year deadline, a draft report was in hand discussing two broad classes of radio telescopes: (a) a general purpose 70 to 100 meter class instrument operating with “full efficiency” up to 22 GHz (1.3 cm), but with good efficiency up to 43 GHz (7 mm) and with limited performance up to 86 GHz (3.5 mm), and (b) a larger 100 meter to 150 meter diameter antenna capable of working only up to 3 GHz (10 cm). Although it was appreciated that the Green Bank site had limited capabilities at millimeter wavelengths, with the continuing increase in RFI, the location in the National Radio Quiet Zone offered unique opportunities at longer wavelengths.
Based on estimates received from various manufacturers and by scaling the cost of recently constructed radio telescopesFootnote 53 including the effects of inflation, the construction costs of the proposed “Very Large Dish (VLD)” were estimated to be in the ballpark of $50 million.Footnote 54 Suggested cost saving measures included choosing a site with low wind speed, restricting the slewing velocity and acceleration, limiting the elevation to 10 or 15 degrees above the horizon, avoiding complex joints and hard to fabricate pieces, and using a simple, easy to control computer such as the IBM PC-AT.Footnote 55 Understanding the Director’s charge to the NLSRT committee that the next major NSF-funded NRAO facility was to be a millimeter array, the committee suggested that in view of their interest in SETI and in space VLBI, NASA might be the appropriate agency to support construction of the VLD. But a lot of work was still needed to understand the size/wavelength and conventional symmetric/unblocked aperture configuration trade-offs and their impact on the construction cost. In particular, the illumination efficiency and polarization properties of unblocked apertures, especially at the longer wavelengths, was not well understood. Community interest in the study was minimal. One prominent scientist wrote, “To be honest, I cannot justify spending any time on this now; the prospects for a positive outcome just seem too bleak.”Footnote 56
Meanwhile, during the course of the NLSRT study, an added incentive to consider the next generation of steerable radio telescopes developed as a result of a new threat to the continued operation of the Green Bank facility, especially the 300 Foot Transit Telescope. By 1988, in addition to the NRAO facilities, the National Science Foundation was operating a number of radio telescopes throughout the country. In recognition of its increased use for astronomy and the corresponding decrease in Department of Defense funding resulting from the 1969 Mansfield amendment, funding for astronomy at Haystack transferred to the NSF, although an important Haystack VLBI program remained largely supported by NASA. In 1969, ownership of the Haystack antennas was turned over to MIT, and management of the Haystack Observatory was assumed by NEROC, although MIT continued to provide administrative support and the Haystack Observatory staff remained as MIT employees. Similarly, responsibility for the Arecibo Observatory was transferred from the Air Force to the NSF. Cornell established the National Atmospheric and Ionospheric Center to administer the Observatory operation as a national observatory, joining NRAO and NOAO as the third national facility for astronomy, but placing increased burden on the NSF operating budget. Elsewhere in the US, e.g. at Caltech, Michigan, and Ohio State, other radio astronomy programs were transferred from ONR or AFOSR to the NSF. It is always difficult to determine in such circumstances whether or not new money was actually added to the budget, since one never knows what the budget would have been in the absence of the new initiatives. Nevertheless, by this time there were a total of 12 radio astronomy facilities in the US which were receiving funds from the NSF, and there were no comparable facilities which were operated solely with private or state support.
Faced with the prospect of inadequate funds to operate two national radio astronomy observatories, as well as a growing number of university operated radio astronomy facilities, the NSF Astronomy Division Director Laura (Pat) Bautz convened a sub-committee of their standing Advisory Committee for Astronomical Sciences
to identify those NSF funded radio facilities “having the highest scientific priority so that they could be supported at levels sufficient to exploit their capabilities with the resources available.”Footnote 57 The sub-committee was asked to “recommend relative priorities” with the implication that less productive instruments could be closed with minimal loss to astronomy. Donald Langenberg, a former Deputy Director of the NSF, was appointed sub-committee chair.Footnote 58 On 21–23 April 1988, representatives from all of the major US radio astronomy facilities gathered in Chicago at the Rosemont O’Hare Exposition Center to convince the Langenberg Committee, as the sub-committee was known, of the merits of continued operation of their facilities.
The Langenberg Committee weighed matters of frequency coverage, spatial resolution, versatility, future potential, ongoing research programs, impact to other disciplines, technology development, role in training students, and community access. Surprisingly, the Committee claimed it did not consider budgets and gave little weight to costs. The Committee reviewed and classified 12 US radio telescopes. Apparently not wanting to offend their radio astronomy colleagues and appear to be conspiring with the NSF to close radio telescopes, the Committee said nice words about each facility that they were asked to review and stated that “all currently funded facilities merit continued support.” However, given the likely prospect of extremely limited funds for at least another year, and to be responsive to their charge, the Committee divided the NSF funded radio telescopes into three priority categories.
Group A contained those “deemed absolutely essential to the continued health of astronomy;” Group B facilities were “highly recommended … under all but truly disastrous funding levels;” while Group C telescopes were declared to be marginally less competitive than those in Group B. Group A facilities included the VLA, VLBA, the Berkeley-Illinois-Maryland Array, the OVRO mm array, and the Caltech Submillimeter Observatory on Mauna Kea. Group B contained NRAO’s 140 Foot Antenna and its 12 Meter Millimeter Wavelength Telescope on Kitt Peak, the 14 meter millimeter wave dish at the Five College Radio Astronomy Observatory (FCRAO), and the Arecibo Observatory. The NRAO 300 Foot, the Haystack 120 foot, and the OVRO 40 meter antennas were deemed “less competitive” and placed in Group C. In the case of the 300 Foot Telescope, the Langenberg Committee drew attention to the original limited goals and the subsequent upgrades which enabled a wide range of important contributions. “However,” the Committee concluded, “if the NSF finds that it cannot support even the current minimal complement of radio telescopes, the Committee reluctantly recommends diverting resources from the 300 Foot to adequately support higher priority facilities.” In particular, NRAO and the NSF were about to be faced with the appreciable costs required to operate the VLBA, which was still under construction. As a result of the anticipated budget limitations and given the mandate from the Langenberg Committee, NSF funding was withdrawn from both Haystack and FCRAO. Almost surely NSF funds for the 300 Foot, and perhaps the 140 Foot as well, would have been terminated within a few years. Not only were the prospects for building a new large steerable antenna bleak, but the long term prospects for the continued operation of the existing Green Bank telescopes were not encouraging. Without the 300 Foot and 140 Foot Antennas, the future of Green Bank and the National Radio Quiet Zone was in doubt.
Collapse of the 300 Foot Telescope
All that suddenly changed on the night of 15 November 1988. At about 10:30 pm, George Seielstad (Fig. 9.8), the NRAO Assistant Director for Green Bank Operations, received a telephone call from the head of telescope operations, Fred Crews.Footnote 59 “George,” Crews reported, “You have a telescope down.” Seielstad was not too alarmed. “The telescope is down,” was standard radio astronomy-speak, generally meaning that telescope wasn’t working properly because of some receiver or antenna malfunction, a not uncommon occurrence. However, Crews had a more serious message. At 9:43 pm that evening, the entire 300 Foot antenna structure had completely collapsed; all that remained was a tangle of steel members (Fig. 9.9). A later analysis reported that a large gusset plate which joined several members high up in the dish backup structure had cracked due to metal fatigue. That caused added stress on the adjoining members which then broke, spreading additional force to the surrounding structure, leading to the collapse of the whole antenna. Greg Monk, the 300 Foot Telescope operator that night, was working in the control building and noticed falling ceiling tiles and a steel member that had crashed through the roof. Fortunately, no one was killed or injured in the accident. Only five months after the Langenberg Committee had sentenced the 300 Foot to death, the NSF was spared the administrative burden of withdrawing funds for the operation of the telescope, which they knew would mean dealing with West Virginia Senator Robert Byrd, who had been a consistent and staunch supporter of the NRAO Green Bank operation. Indeed, in previous years when NRAO wanted to consolidate administrative activities at the Charlottesville headquarters by moving the small NRAO fiscal division from Green Bank, Senator Byrd made clear that he did not approve.
In the 26 years since it went into operation, more than 1000 scientists had used the 300 Foot Telescope for 178,830 hours and published 429 peer reviewed scientific papers. Fifty-three students had used the telescope for at least part of their PhD dissertation research. About one-fourth of all known pulsars, including the Crab Nebula pulsar, had been discovered with the 300 Foot, and more than 100,000 discrete radio sources had been cataloged. This was more than all previously detected radio sources from all the radio observatories in the world. A total of $3.6 million had been spent on 300 Foot construction, upgrades, and ancillary equipment. When the telescope collapsed on the night of 15 November 1988, the estimated replacement value was nearly $10 million.
Like other US government facilities, NRAO carried no insurance, and the prospects for replacement appeared nil. All that might be recovered would be the salvage value of the nearly 500 tons of aluminum and steel lying in a West Virginia field. However, even that was not to be. The steel girders lay in a twisted mess under great tension. Releasing one member might release a dangerous spring that could cause serious, possibly fatal, injury. Indeed, over the next months, the interlocking pile of steel girders continued to flex and move. Salvage was dangerous. The best deal NRAO could get was from the Elkins Iron and Metal company, who agreed to take away the debris at no cost. Other companies wanted to be paid to clean up the mess. During the cleanup nine months later, an unanticipated danger surfaced when a four foot rattlesnake emerged after being evicted from its home within the tangled jumble of steel girders.
Just four days after the collapse of the 300 Foot Telescope, the NSF and AUI commissioned an extensive formal investigation of the accident. A blue ribbon Technical Assessment Panel was appointed to determine the cause of the telescope failure. The panel was chaired by former Cornell Vice President Robert Matyas.Footnote 60 As frequently happens with such incidents, the NSF and AUI wanted to know if there was someone to blame. Contrary to some statements made immediately following the collapse, the 300 Foot Telescope was not built to physically last only 5 or 10 years, although the expected scientific lifetime was thought to be of that order before it would be superseded by a newer, more powerful instrument. However, the anticipated 100 meter class fully steerable telescope was never built. With the various improvements to receiver sensitivity, the two upgrades to the dish surface, the construction of the tracking feed, and the implementation of fast elevation scans, the 300 Foot Telescope remained scientifically productive until its collapse in 1988. There were no known structural compromises made at the time of construction that might have led to its collapse after more than 25 years, although a computer finite element analysis, which was not available a quarter of a century earlier, clearly indicated that the structure had been over-stressed. Specifically, the panel investigation showed that the gusset plate, which joined members of the back-up structure to the elevation bearing mounted on one of the two towers supporting the structure, had what were called “micro-fractures” that may have been introduced during the telescope construction, and which slowly expanded under repeated stress.Footnote 61
At the time of the collapse, the 300 Foot Antenna was being used by James Condon to survey the sky at 6 cm wavelength for new radio sources. Due to the great improvements in receiver sensitivity since the telescope was first designed, it was no longer necessary to wait for the sky to slowly drift through the antenna beams as the Earth rotated. Instead, in order to speed up their observations, Condon and his colleagues were rapidly scanning the telescope in elevation, which likely contributed to the ultimate failure of the structure. By an unfortunate coincidence, at the time, the NRAO computing staff were “upgrading” the software needed to analyze the telescope data. So, although Condon was nearing the end of a month long observing program, he had been unable to analyze his data. Months later, when he was able to examine the data, he realized that even early in the previous month, there was a large hysteresis between the apparent positions measured when the telescope was driving up and when it was driving down. “Even more ominous,” Condon (2008) later said, “during the final week before the collapse, the north-south beamwidth had increased from 3 arcmin to 4 or 5 arcmin.” With the benefit of hindsight, Condon later realized that this was an early indication of the failing structure.
The review panel determined that the gusset plate which had suffered from metal fatigue “had been cracking for years and finally ran out of cross section.” They also praised the original design and low cost construction of the antenna, as well as the quality of NRAO’s continued inspections and maintenance, and concluded that there was no human error involved which could have prevented the incident. Nevertheless, with the benefit of hindsight, the stresses on a large number of structural members were perhaps as much as a factor of two higher than would be permitted by existing codes at the time the structure collapsed, and therefore the “structure was marginal with respect to structural failures.” The panel concluded that the “failure of the telescope structure was not the result of inadequate maintenance or inappropriate operation of the telescope,” and noted that there were no “unfavorable implications about the current ability to engineer future telescopes of this or larger size.” These conclusions were met with a sigh of relief, not only at NRAO, but also over at the Naval Radio Station in Sugar Grove, where the staff was alarmed by the collapse of the 300 Foot Antenna as their 150 foot antenna was based on a similar design, and they worried that it might share whatever structural deficiency caused the destruction of the Green Bank 300 Foot.
Considering that the 1988 Langenberg Committee had declared the 300 Foot Telescope to be scientifically “less competitive,” the response of the media and the scientific community was surprising if not startling. Washington newspapers sent helicopters to Green Bank to photograph the remains of the collapsed telescope. On his daily radio broadcast, Paul HarveyFootnote 62 announced, “The science of astronomy has suffered a devastating setback!” News media from around the world reported on “a major blow to world astronomy.” In a front page picture caption, The New York Times stated that “the 300 foot radio telescope was one of the most powerful instruments in the world.”Footnote 63 Several newspapers, including one in South Africa, blamed the collapse on “hostile space aliens” who wanted to stop earthlings from eavesdropping on their activities. A front page headline declared “Space Aliens Destroyed Radio Telescope” (Fig. 9.10).
A Controversial Congressional Earmark
A more serious and a more sober response came the day after the telescope collapse when West Virginia’s Senators Robert Byrd (Democrat, West Virginia) and Jay Rockefeller (Democrat, West Virginia) contacted the NSF about replacing the telescope. At the time, then NSF Director Erich Bloch was in Antarctica. Bloch, the former IBM Vice President and winner of the 1985 National Medal of Technology for his contributions to the development of the IBM System/360 series of computers, was the first NSF director to come from industry and to not have a PhD. He considered development of economic competitiveness to be a strong priority of NSF-sponsored basic research.Footnote 64 On November 28, just after he returned from Antarctica, Bloch was summoned to an evening meeting in Senator Byrd’s office to explain what he planned to do to replace the 300 Foot Telescope. Byrd, who was at the time the Senate Majority Leader, was joined by Senator Rockefeller who was a member of the Senate Committee on Science, Space, and Technology, NRAO Director Paul Vanden Bout, AUI President Robert Hughes, and George Seielstad, NRAO Assistant Director for Green Bank Operations, who, significantly, was the only resident of West Virginia from the NRAO delegation. However, Bloch, who was joined by Ray Bye, Director of the NSF Office of Legislative Affairs, was not intimidated by Senator Byrd. Vanden Bout explained that NRAO planned to propose to the NSF the construction of a new radio telescope to replace the collapsed 300 Foot Dish, but Bloch pointed out that any proposal to the NSF would need to be evaluated within the overall context of national needs and NSF priorities, and that such an evaluation would take considerable time. The Senators countered that they hoped for a “firmer commitment and a definite timetable.” Clearly, more specifics were needed from NRAO including the cost and timescale for building a radio telescope to replace the fallen 300 Foot Antenna (Fig. 9.11).
All NRAO had to offer, however, was the report of the NLSRT study with a “bench-mark” design for a 70 meter antenna operating to millimeter wavelengths, which was not intended to replace the 300 Foot Antenna but, as Burke had urged a year earlier, to replace the 140 Foot Radio Telescope, with its “obsolete equatorial mounting, its excessive gravitational deformations, non-repeatable pointing errors, and poor surface accuracy.” The NLSRT report, which was rushed to completion within a few weeks of the 300 Foot collapse, reflected an emphasis on the shorter wavelengths and correspondingly smaller aperture than the 300 Foot.Footnote 65 At least another year of engineering work was still needed before a Request for Proposals (RFP) could be prepared, and a ballpark figure of $50 million was the only cost estimate available. Radiation Systems Inc. (RSI) president Richard Thomas saw an opportunity for new business, and within a few weeks of the 300 foot collapse, Thomas submitted an estimate of $9.6 million to replace the 300 Foot with a fully steerable antenna. In a series of letters to members of Congress from states where RSI had manufacturing facilities, Thomas actively lobbied to replace the fallen 300 Foot antenna. Thomas did not give any detailed specifications, but implied that aside from steerability, the RSI antenna would have the same performance as the 300 Foot Transit Antenna.Footnote 66 A re-evaluation of costs by the NLSRT committee using a wider range of data obtained from various manufacturers confirmed the NLSRT cost estimate of $50 million, although numbers ranged from less than $10 million (RSI) to nearly $100 million (JPL/Ford Aerospace).Footnote 67
Just two weeks after the 300 Foot collapse, MIT Professor Bernard Burke sent a memo to the American Astronomical Society’s Committee on Astronomy and Public Policy to alert them to the circumstances surrounding the telescope collapse and the strong congressional interest in providing a replacement.Footnote 68 Burke, who to a large extent had initiated the NRAO NLSRT study just a year earlier, wrote to reassure the AAS members that “powerful forces are at work” to fund a new radio telescope in Green Bank, but that it would be “disastrous” if the construction costs of a new telescope were to come from NRAO’s limited operating budget. Burke pointed out that Senate Minority Leader (and former Senate Appropriations Committee chair) Pete Domenici (R-NM) would surely object if the Green Bank construction funds came at the expense of VLA operations in New Mexico or the then ongoing construction of the VLBA. Moreover, contended Burke, it was “absolutely essential” that Green Bank construction funds “not be borne by the NSF by taking resources from other areas of astronomy or physics without a supplement to the budget.”
At the time, the next large NSF construction project was anticipated to be LIGO, the Laser Interferometer Gravity Wave Observatory, but LIGO construction was not yet funded. The NSF funding request for FY1990 only contained a nominal sum for continued LIGO research and development. LIGO was a very controversial project designed to detect the gravitational waves expected to be generated from the final stages of collapsing orbiting binary neutron stars. Although conceived by physicists, the label “Observatory” suggested to many that it was another expensive astronomy project. As a joint project of MIT and Caltech, LIGO had powerful support, but also strong opposition from many in the physics community who argued that LIGO would not have sufficient sensitivity to detect gravitational waves. There was also opposition from the astronomy community which had other priorities for new observatories. This was one instance where radio and optical astronomers were united against a perceived joint rival.Footnote 69 There was considerable support, however, for LIGO from NSF Astronomy Section Director Pat Bautz, who perhaps saw that replacing the 300 Foot Telescope with LIGO was a way of preserving her astronomy priorities.
As planned, LIGO consisted of a complex system of mirrors spaced 4 km apart located at the ends of two orthogonal excavated tunnels. The mirror separation was monitored by a system of lasers, and calculations showed that a passing gravitational wave was expected to change the mirror separation by only about 10−15 mm. In order to discriminate between a gravitational wave and disturbances from local vehicular traffic or seismic activity, the NSF planned to build two widely separated complexes, one of which was to be near Columbia, Maine. With the encouragement of the NSF, Caltech investigated the possibility of replacing the Maine site with Green Bank. In a report dated 31 January 1989, LIGO Principal Investigator Rochus (Robbi) Vogt reported that “it is technically feasible to build a LIGO installation” in Green Bank, but that due to the more difficult “topographical complexity” there would be a $7 million to $18 million increase in the cost compared with the alternate site in Maine.Footnote 70
So when confronted by the senators, Bloch stubbornly ignored Rockefeller’s offer to help, explained that the NSF had other priorities for astronomy, such as LIGO, and that, considering the Langenberg report, he did not plan to replace the Green Bank radio telescope. This apparently enraged Byrd who, reportedly red-faced, pointed his finger at Bloch claiming that in all his years in Washington he had never encountered such an uncooperative agency head. According to Vanden Bout, sensing that the situation was getting out of hand, Rockefeller then leaned over the table and, towering over the seated Bloch, said, “Leader is about to become Chair of Appropriations. He will have his finger on every dime of the Federal budget. Now, are you prepared to let us help you?”Footnote 71 AUI President Hughes, recognizing the need for at least the semblance of peer review, offered to write a proposal. Apparently all this made an impression on the NSF Director, who responded that he “could work with the Senator,” to which Byrd replied that he had “been waiting all evening to hear that.”Footnote 72
An accomplished fiddler, former butcher, welder, and in his youth a Ku Klux Klan organizer, Robert C. Byrd was first elected to the US Senate in 1959 after serving three terms in the House of Representatives, and became the longest serving member of the US Congress. Since 1977, Byrd had served either as the influential Senate Majority or Minority Leader, but with the new 101st Congress, starting in January 1989, Byrd became the powerful Chair of the Senate Appropriations Committee, a position which he used to bring billions of dollars in federal funds to West Virginia and, wherever he could, to protect every West Virginian job. Recognizing that both attrition and lay-offs can reduce the scope of an organization, Byrd engineered the 1988 NSF Authorization Bill to explicitly forbid the elimination of a handful of positions at Green Bank which NRAO had proposed to transfer to Charlottesville.
George Seielstad, the Green Bank site director, had received his PhD from Caltech in 1963 for his research on radio source polarization at the Owens Valley Radio Observatory (OVRO
). Following his graduate work, Seielstad spent a year on the faculty of the University of Alaska, and then returned to Caltech as a member of the OVRO staff and to serve as OVRO site manager. Living with his young family in the nearby small town of Bishop, Seielstad became involved in local politics. In 1974 he took a leave of absence from Caltech to run for Congress as a Democratic candidate in California’s 18th Congressional District, representing the sparsely populated Inyo, Mono, and Alpine Counties. With what was probably a record low campaign budget, Seielstad easily won the Democratic primary, but lost the general election to the Republican incumbent, William Ketchum. Seielstad garnered 47% of the vote in this traditionally Republican district, and drew the attention of the Democratic National Committee. However, having spent significant personal funds to support his primary and general election campaigns, Seielstad gave up his political career to return to radio astronomy. But his service to the Democratic Party was not to be forgotten.
Both Senator Byrd and NSF Director Bloch were strong-minded individuals who normally got their way; neither wanted to be manipulated or, even worse, appear to be manipulated. Byrd was probably one of the most influential people to have served in Congress, having held all of the senior appointments in the Senate. Seielstad later described Bloch as an “acerbic, combative tough-guy personality.”Footnote 73 Byrd was fascinated by astronomy and what astronomers knew about the existence of God. He was primarily motivated, however, by the opportunity to enhance the economy of West Virginia by bringing jobs to the state and more broadly raising the profile of West Virginia, which was widely perceived as an Appalachian backwater. He did not really care whether it was going to be a new radio telescope or LIGO that would be built in Green Bank, as long as it employed a lot of people and brought visibility to the state and to himself.Footnote 74
However, before it could build a new radio telescope, NRAO and the radio astronomy community faced a long period of planning and construction. Characteristic of the solidarity shared by the global community of radio astronomers, Peter Mezger, Director of the MPIfR and former NRAO staff member, kindly offered to make time available to 300 Foot users on the Institute’s 100 meter antenna, and the NSF made grants available to American users of the MPIfR telescope. This was a good deal for American radio astronomers, as well as for the NSF. Even if a different investigator were to fly to Germany each day to use the MPIfR telescope, it would only cost less than half a million dollars a year in plane fares and travel costs, or about an order of magnitude less than the annual operating cost of the German 100 meter telescope.
Meanwhile, encouraged by the apparent support of the West Virginia Senators, NRAO moved rapidly to present a credible plan to the NSF. Typically, planning for new telescopes, whether radio or optical, involves many years of design and engineering, years of study to choose the optimum location, as well as years of “selling” the facility, first to the astronomical community, then to the funding agencies, the Administration, and finally Congress. In this case the location was clear: Green Bank, WV. Ironically, Congress, if not the NSF, appeared to be supportive. Yet there was no telescope design, nor even a consensus of what kind of instrument to build to exploit the apparent funding opportunity. All that was available was the hastily completed 28 November 1988 NGLSRT report.
On 2–3 December, NRAO convened the first of several meetings between NRAO staff and members of the NRAO user community to reach a consensus on a replacement for the ill-fated 300 Foot Telescope. Fifty-six individuals from 15 separate institutions, plus NRAO staff, participated in this hurriedly arranged meeting to discuss priorities for the replacement telescope.Footnote 75 Many who could not attend, as well as those who did participate, wrote letters to NRAO and to the NSF presenting a variety of arguments supporting their particular scientific interest. Interestingly, strong support for the radio telescope came from Joseph Weber, who was the pioneer in developing instrumentation for the detection of gravity waves, but who saw LIGO as competition to his own search for gravity waves.Footnote 76 Others wrote opposing the construction of any new NRAO facility at a time of great need for correcting the diminishing support for American university radio astronomy facilities, or opposing the apparent use of “pork-barrel” funding.
The meeting participants were able to inspect the remains of the collapsed telescope and heard a report from former NRAO Director Dave Heeschen on the investigation already underway to find the cause of the collapse. But the presentations and discussion quickly turned to understanding the scientific drivers and to reviewing what was learned from the NLSRT study of a Very Large Dish (VLD). Considering the interest of the West Virginia Senators, suggestions for a southern hemisphere site or a drier site near the VLA, or for an array of small dishes, were quickly dispensed with as not being realistic. Recognition that the areas of scientific opportunity years in the future could not be defined, the participants argued for maximum flexibility. The discussions quickly led to a large steerable antenna with full sky coverage working to relatively short wavelengths. A tentative schedule at the December meeting called for fixing the telescope characteristics by the end of 1988, one month away, developing a conceptual design by the end of 1989, and an engineering design by the end of 1990. This would allow construction to begin in 1992 with a very optimistic completion date by the end of 1993.
Nevertheless, there remained several controversial areas to be settled immediately. For a given cost, there is a tradeoff between antenna size and the limiting operating wavelength.
Based on established scaling laws, a 100 meter diameter telescope was expected to cost about six to seven times more than a 50 meter telescope with the same performance specifications. For a fixed size, a telescope built to operate at 3 mm wavelength might be expected to cost about twice as much as one designed for only 1 cm operation. Reflecting the rapidly evolving scientific interests driven by the existing discoveries in molecular spectroscopy, the series of radio telescopes designed by the earlier LFST group had successively decreased operating wavelength and compensating smaller diameters to mitigate the cost, and this argued for a telescope capable of operation to about 100 GHz (3 mm wavelength), where the Green Bank atmosphere becomes noisy and unstable. But other areas of research, mainly pulsar studies and 21 cm hydrogen research, argued for the largest possible size. Achieving a high operating frequency for pulsars was not important, as pulsars are strongest at lower frequencies, and it was considered fairly straightforward to meet the relatively easy performance specifications needed for pulsar studies. Scaling from the costs of existing antennas in size or wavelength limit, as well as estimates received from various manufacturers, cost estimates for antennas in the range of 70 to 100 meter diameter and operating at wavelengths as short as 3 mm ranged from less than $50 million to more than $100 million.
Following the 2–3 December Green Bank meeting, there was little agreement among members of the NRAO user community. Many argued for a very large dish operating at wavelengths of a few centimeters to replace the fallen 300 Foot for VLBI (especially in conjunction with a space-borne antenna), H I (21 cm) and OH (18 cm), pulsar, SETI, and studies of radio galaxy and quasar radio source distributions, luminosity functions, variability, and evolution. Others favored a smaller aperture that would work well at the shorter wavelengths needed for the rapidly growing field of molecular spectroscopy and searching for cosmic microwave background anisotropies. The proponents of the “big dish” argued that Green Bank was a terrible site for millimeter wave observations. The counter argument noted that important millimeter observations were being made at the FCRAO in central Massachusetts, where the weather conditions were comparable to those found in Green Bank. Spectroscopists and 21 cm workers argued for a clear aperture offset design to minimize reflections and sidelobes; others pointed out that no large offset antenna had ever been built and that it would be unreasonably costly to pursue this concept. Tor Hagfors, Director of the Arecibo Observatory, expressed concern about the impact that a new fully steerable radio telescope might have on the Arecibo Observatory, but noted that if the Arecibo Observatory were to be upgraded, the impact might be minimized.Footnote 77
Yet others, such as Richard McCray from the University of Colorado and NOAO Director Sydney Wolfe, worried that any funds spent on a new NRAO antenna might come at the expense of other high priority programs or their own pet project, and argued against any 300 Foot replacement. Among the broader astronomical community, it had not escaped notice that the last two major NSF astronomy projects were for radio telescopes: the VLA and the VLBA which was still under construction. Optical astronomers had been waiting for the start of a national 8 meter telescope and wanted assurance that the “Byrd Antenna” would be “coupled with an overall improvement of funding for ground-based astronomy.”Footnote 78
There were also clear applications of a large radio telescope to spacecraft tracking and to various military uses, with implications for possible broader funding support. To address some of the concerns of the astronomical community, NRAO actively solicited interest in supporting the construction of a new radio telescope from NASA, the US Naval Observatory, and the Jet Propulsion Laboratory (JPL). However, this raised the possibility that with reduced NSF funding, Green Bank might ultimately perish as a radio astronomy facility, a specter that would resurface several decades later. Nevertheless, following the Green Bank meeting, Vanden Bout wrote to the NSF Director apprising him of the strong scientific support for replacing the 300 Foot Antenna with a modern 100 meter class fully steerable radio telescope. Noting the “important role in the missions of other agencies,” such as NASA and the US Naval Observatory, Vanden Bout suggested that it might be appropriate to share the construction cost and use of the telescope.Footnote 79
Meanwhile, the NRAO scientific staff and external radio astronomers continued to debate the design options of a new radio telescope. In a 12 December 1988 staff meeting, the New Mexico VLA staff argued that a compact array of smaller dishes would be more powerful than a single large antenna. But Vanden Bout quickly dispensed with the array concept on the largely non-technical grounds of higher operating costs and the need for NRAO to maintain excellence in both arrays and single dishes.Footnote 80 A particularly controversial topic was the relative merits of an unblocked aperture with its greater cost and potentially poorer pointing precision but lower sidelobes, better aperture efficiency, and relative immunity to interference versus cheaper and better understood, more conventional designs. Conventional radio telescopes have the feedFootnote 81 or sub-reflector mounted at the center of the dish supported by two, three, or four supporting legs. But, the feed or subreflector, as well as the feed supporting structures, partially block the aperture, decreasing the gain or sensitivity. Even more important, with conventional radio telescopes, the blocking structures set up reflections, or standing waves, between the dish and subreflector, which cause frequency ripples that greatly compromise spectroscopic observations. Moreover, the blockage generates antenna sidelobes that extend well outside of the main beam. Typically, about one third of the power received by a conventional radio telescope comes in through the sidelobes. This seriously impacts studies of widely distributed radiation, such as 21 cm studies of galactic hydrogen. Additionally, with lower sidelobes of an off axis feed/subreflector system, the telescope would be less subject to interference from satellites and aircraft. Off axis antennas had been built and were widely used in the telecommunications industry and for consumer satellite TV reception, but in 1989, the largest known antenna ever built with an unblocked aperture was only 7.5 meters in diameter. The construction of a large unblocked aperture antenna was a formidable challenge, as it required an asymmetric dish design, and many predicted a large but uncertain cost impact and likely reduction of antenna pointing accuracy due to inadequate stability of the feed-subreflector support structure.
A significant question was whether it was more appropriate for NRAO, the national radio observatory, to build a low cost specialized antenna or a general purpose antenna that would satisfy the needs of the large and diverse NRAO user community. Some argued that a general purpose instrument involves compromise so that it is not optimum for anything, while special purpose antennas, such as the old 300 Foot antenna, can have applications that often extend beyond the original design goals. Many letters were written to NRAO and to the NSF arguing one way or another. The arguments boiled down to a large dish of the order of 100 meters or larger but operating only at centimeter and longer wavelengths vs. a smaller but more precise antenna capable of operating at millimeter wavelengths. Green Bank astronomer and later NRAO Assistant Director for Green Bank operations, Jay Lockman, was probably the most vocal supporter of what he called a “Big Floppy Dish” (BFD) with an unblocked aperture and low sidelobes that would, among other advantages, be a unique instrument to study galactic H I, since all existing instruments suffered from stray radiation that contaminates 21 cm spectra. Burke protested that this was contrary to the consensus of the 2–3 December Green Bank meeting. With considerable prescience, he pointed out that a clear aperture asymmetric structure would introduce many design problems, cost risks, more complex feeds, and a delay in completion, which he argued NRAO and the radio astronomy community could ill afford.Footnote 82
No matter how well designed, the effectiveness of optical telescopes is in practice limited by the environment, clouds, and “seeing,”Footnote 83 while the performance of radio telescopes depends on locally generated radio frequency interference (RFI) and increasingly at shorter wavelengths to atmospheric water vapor. Although the location of the proposed new dish was in a sense a non-issue if NRAO wanted to exploit the enthusiasm of the West Virginia Senators, this did not dissuade the purists. While there was general support for locating the new dish at one of the existing NRAO sites to minimize site development and operating costs and to exploit the presence of a highly trained technical staff, many radio astronomers argued for locating the antenna at the 7,000 foot elevation VLA site, with its clear skies and low water vapor content needed for effective operation at millimeter and short centimeter wavelengths. On the other hand, due to its location in the National Radio Quiet Zone, the Green Bank site was probably the best place in the US for doing radio astronomy at longer wavelengths where protection from RFI is an issue. It was also realized that if the 300 Foot replacement were to be built in New Mexico, this would likely expedite the migration of NRAO activities to New Mexico and thus lead to the closing of the Green Bank facility and the subsequent loss of the unique capabilities of the National Radio Quiet Zone.
However, with an average cloud cover rivaling the Northwest and upper Great Lakes areas, it was argued that the Appalachian Mountain area is a poor location for millimeter observations. George Seielstad mounted a vigorous defense of the Green Bank site, pointing out that on a clear cold winter night, the short wavelength observing conditions can be excellent. Although it was understood that there are not too many clear cold winter nights each year that could support short millimeter wavelength observations, realistically the choice was between a radio telescope in Green Bank or LIGO.
NRAO Director Paul Vanden Bout actively solicited support from American radio astronomers, support which ranged from enthusiastic to lukewarm. There was a wide range of opinions about how much the replacement telescope should cost and about the relative priorities of wavelength coverage and size. In a hastily convened presentation to the NSF on 21 December 1988, just five weeks after the collapse of the 300 Foot Antenna, and less than three weeks after the Green Bank meeting to define the proposed telescope, Vanden Bout discussed the long history of planning for a large steerable radio telescope and presented a conceptual plan for a 70 meter diameter radio telescope at an anticipated cost of about $50 million dollars. In an effort to recognize the interests of millimeter astronomers, Vanden Bout suggested that the proposed antenna could have useful performance at millimeter wavelengths. Vanden Bout’s strategy was to make the NSF comfortable with the Senate initiative. Bautz and others were clearly nervous about the appearance of pork and the expected resistance from the optical astronomy community, and from radio astronomers more interested in millimeter astronomy or arrays of smaller antennas, along with those concerned about the growing concentration of US radio telescopes at NRAO. In particular, the proposed 300 Foot replacement might threaten the planned Millimeter Array, also proposed by NRAO, or the planned upgrades of the Haystack and Arecibo radio telescopes. The latter was a particular concern, as Bloch and Bautz did not want to cause trouble with Cornell President Frank Rhodes, who was a member of the NSF National Science Board.Footnote 84 Closer to home, even the AUI Board of Trustees was less than enthusiastic about exploiting Congressional interest in a non-peer reviewed project that might impact other planned astronomy or physics programs.
A week later Byrd and Rockefeller announced that they wanted to see a proposal for the replacement of the destroyed telescope by January.Footnote 85 At the same time, NRAO learned that the NSF was seriously considering how to best exploit Senator Byrd’s interest in Green Bank to satisfy the Foundation’s own goal of building LIGO in Green Bank and perhaps closing down the radio astronomy operation. Vanden Bout was summoned by Byrd to appear in the Senate Appropriations Committee Room on 5 January 1989, along with NSF personnel. To their chagrin, Seielstad and AUI President Bob Hughes were initially not invited, but both managed to lobby for inclusion and ultimately did participate in the meeting. While waiting for Senator Rockefeller’s late arrival, Senator Byrd explained to the NRAO/AUI participants how he had risen to such a powerful position in the Senate.Footnote 86 He made it clear that he expected to get whatever he wanted in Congress and from the NSF.
When the meeting began, the NSF presented their proposal to build LIGO in Green Bank instead of a new radio telescope. Vanden Bout produced a letter from Tony Tyson, a well-known astrophysicist from Bell Labs and long-time opponent of LIGO, who argued that LIGO was poorly conceived, but otherwise NRAO refrained from speaking against LIGO.Footnote 87 NRAO’s position was difficult, as previously Seielstad had used his Caltech connections to try to convince Caltech’s LIGO Director and former Provost and Vice President for Research, Robbi Vogt, to bring LIGO to Green Bank. But this was before the 300 Foot collapse and the threat that LIGO would compete with the proposed 300 Foot replacement radio telescope. Before the NRAO/AUI contingent was excused, Seielstad declared his preference for the new radio telescope over building LIGO in Green Bank. Nevertheless, following the meeting, Byrd’s staff leaked that “NRAO blew it,” by not coming down hard on LIGO.Footnote 88 Subsequent discussions with Byrd’s Director of the Senate Appropriations Committee, Terry Sauvain, indicated Sauvain’s strong preference for LIGO, and that he had discussed with the NSF’s Ray Bye how to best achieve their goal. However, Carol Mitchell of Byrd’s personal staff leaned toward the radio telescope and kept Seielstad and Byrd informed of the behind the scenes maneuvering by Sauvain and Bye, all of which infuriated Byrd, who did not tolerate any disagreements among his staff.
Having second thoughts about not having been more critical of LIGO, and not informing anyone else, Seielstad arranged a private meeting with Byrd to explain that he had been too meek because NRAO did not want to offend Caltech. Byrd, in return, explained that he didn’t have the knowledge to discriminate between the value of LIGO and a radio telescope, and depended on the scientists.Footnote 89 Meanwhile, NRAO was instructed by Bloch to cooperate with a planned Caltech visit to evaluate the feasibility of placing LIGO in Green Bank. Not only was the proposed 300 Foot replacement telescope in danger, but Vanden Bout worried that NRAO would be “slaughtered” by Bloch in future NSF budgets. Another meeting was scheduled for 23 February, but no one was clear what that would achieve.
Hearing about the NSF proposal to “forego the building of a successor radio telescope to the lost 300 Foot Antenna at Green Bank, and instead to site one of the elements of the LIGO gravity experiment there,” MIT’s Bernard Burke, flexing his muscle as a new member of the National Science Board, wrote to Bloch addressing the unique importance of the National Radio Quiet Zone. Burke argued that the continuation of the NRQZ would be uncertain without a replacement telescope as well as important scientific contributions that would result from constructing a state-of-the-art 100 meter telescope in Green Bank.Footnote 90 Seielstad and Vanden Bout were regularly kept informed by Byrd staffers Terry Sauvain and Carol Mitchell about the continuing discussions between Byrd and Bloch on the merits of building LIGO in Green Bank. Aside from producing the letter from Tyson, NRAO refrained from criticizing the Caltech/MIT LIGO project, but Bloch and the NSF continued to resist the idea of building a new radio telescope in Green Bank. NSF head of Math and Physical Sciences, Richard Nicholson suggested to Byrd that LIGO would produce a Nobel Prize for West Virginia. Bloch and Nicholson were certainly not oblivious to the fact that Byrd’s counterpart Chair of the House Appropriations Committee was from Livingston Parish in Louisiana where one of the LIGO elements was to be sited. Following his visit to Green Bank, Vogt was impressed with the infrastructure although concerned about access, and reported back to Bloch that Green Bank was indeed a suitable site for LIGO.
Input from the Congressional Research Service
The US Congressional Research Service (CRS) was originally organized in 1914 as a special reference unit within the Library of Congress. In 1946 it was renamed the Legislative Reference Service and in 1970, it received its present name. The CRS offers bipartisan confidential research assistance to Members of Congress and their staffs. Their reports, while not classified, are not public unless the requesting Member of Congress chooses to make them public. According to the CRS web site,Footnote 91 the CRS is available to Congress 24/7 to offer authoritative, confidential, and objective analysis of current policies and present the impact of proposed policy alternatives.
Richard Rowberg was the Chief of CRS Science Policy Division when, on a Saturday night, he received a telephone call at his home from Terry Sauvain. Senator Byrd, explained Sauvain, wanted the CRS to tell him which was better for West Virginia, LIGO or a radio telescope.Footnote 92 Rowberg’s background was in plasma physics, but he knew who was who in physics and astronomy. To respond to Byrd’s request, he talked to a lot of people, including Tor Hagfors, director of the Arecibo Observatory, as well as scientists at the Lawrence Berkeley Laboratory in California.
On 17 February Rowberg sent Senators Byrd and Rockefeller a memorandum addressing the question of whether LIGO or a radio telescope would best benefit West Virginia.Footnote 93 The CRS report made clear that the issue was not about the scientific merits of building LIGO, but the benefits to West Virginia and the nation’s scientific enterprise, and argued that “LIGO is likely to be built in any case, so the principal scientific question centers on the consequences to radio astronomy of not replacing the 300 Foot Telescope.” Rowberg went on to discuss the issues of the number of personnel that would be involved in each project; the attention and scientific prestige that each project would bring to Green Bank and West Virginia; the impact to astronomy of not replacing the 300 Foot; the number of scientific users; and the potential for including West Virginia University in collaborative research. Describing LIGO as “a high risk experiment,” the report noted that the successful detection of gravity waves would be “a major step in physics,” but that it “will require a substantial advance to the limits of current technology.”
Meanwhile, Caltech’s LIGO Director Robbi Vogt was not going to let an opportunity for a Congressional earmark slip past. In a 24 February telephone call with Rowberg, Vogt suggested that perhaps their previous concern about ground noise in Green Bank was unfounded and that one of the LIGO elements could be built on the Green Bank site. Since only signals detected by both LIGO elements would be considered as due to gravity waves, Vogt suggested that any ground noise generated by only one element of the observatory would be unimportant. The Green Bank site was attractive to Vogt since there appeared to be local opposition to constructing LIGO in Maine. Moreover, argued Vogt, it would save the NSF a lot of money if LIGO could make use of the infrastructure that would be provided by the Green Bank radio observatory. But he also worried that unless a new radio telescope were to be built, the Green Bank site might likely be closed.
In a 27 February memo to Byrd and Rockefeller’s staff, the CRS reported that for this reason Vogt “hopes that a replacement telescope is built” in Green Bank. However, others argued that ground noise must be reduced as much as possible, and that activities surrounding the operation of the radio telescope would have significant impact to the effectiveness of LIGO, and so even the 140 Foot would need to be closed if LIGO were located in Green Bank.Footnote 94
As initially planned by Sauvain, a 23 February meeting, presumably to discuss the input from the CRS, was to exclude NRAO. The meeting was postponed to 6 March, and at Byrd’s insistence Hughes, Seielstad and Vanden Bout did finally attend, along with Bloch and Ray Bye, head of the NSF Legislative Affairs staff. This meeting was held not in Byrd’s Office, but in the luxurious Senate Appropriations Hearing Room. Again Rockefeller was late, which gave Byrd time to tell more stories about the Presidents he had worked with. As expected, Bloch made a strong push for LIGO, referring to potential prestige and increased jobs for West Virginia. NRAO countered with the important science anticipated from the new radio telescope and the many prestigious discoveries already made by radio astronomers. Vanden Bout played hardball, pointing out that without a new radio telescope in Green Bank, in the face of declining budgets and commitments to the VLA and VLBA, the Observatory would be forced to leave Green Bank. The meeting closed with the NRAO representatives being excused while the Senators and their staffs continued to speak with the NSF. Apparently it didn’t go well for Bloch, because he stormed out of the meeting room ignoring Vanden Bout and Seielstad on the way out.
On 7 March, the Senators issued a joint statement extolling the virtues of both LIGO and a replacement radio telescope, but argued that the collapse of the 300 Foot “radio telescope created an emergency situation … that requires replacement at the earliest possible time.” Working from the CRS report, they went on to point out that “replacing the telescope is also important to West Virginia from the standpoint of jobs, payroll, education, tourism and scientific prestige.” Byrd was quoted as saying that he intended to “aggressively pursue funding” for the telescope.Footnote 95 Two days later the West Virginia Legislature unanimously passed a joint resolution urging Congress and the NSF to provide funding for a state-of-the-art fully steerable 100 meter diameter telescope to replace the collapsed 300 Foot. Discussion of the proposed bill on the floors of the WV House of Delegates and the Senate emphasized the economic impact to West Virginia and the additional jobs that the new telescope would bring to Pocahontas County.
On 14 March, the House Committee on Science, Space, and Technology held hearings on the NSF’s 1990 budget request. Four radio astronomers, including Arecibo Director Tor Hagfors, testified on astronomy issues. There was agreement on the importance of replacing the 300 Foot, but concern that there were other higher priorities in astronomy that were already in the budget request. However, if new money were to be added to the FY1990 budget, the group felt that this would not be considered as circumventing the peer review process.Footnote 96 A week later, in a private note to Terry Sauvain, Rowberg pointed out that the NSF FY1990 budget request included $10 million for safety and environmental upgrades to the US Antarctic facility, as well as $250,000 for the start of repairs to the 25 year old Upper Atmospheres Facilities, neither of which had undergone formal peer review.
Although Robert Byrd ruled the Senate with an iron fist and usually got his way, he had two potential challengers to his plans for Green Bank: Representative James Whitten (D-MS), Byrd’s counterpart as Chair of the House Appropriations Committee, and NSF director Erich Bloch. While the NRAO director and AUI president were kept in the dark about where Byrd and Whitten stood on the issue of LIGO vs. the radio telescope, George Seielstad claimed only he, Byrd, and an unnamed informant knew that the decision had already been made in favor of the radio telescope. But Seielstad was worried that due to the lack of a public statement about the future of Green Bank, his staff were leaving, and he was anxious to get started on constructing the new telescope.
Each year the US Congress passes an emergency supplemental funding bill which normally covers the cost of repair and recovery from things like tornadoes, earthquakes, floods, and fires that had occurred during the previous year, but is also used as a catch-all for a variety of other funding issues of special interest to Members of Congress.
The Dire Emergency Supplemental Appropriations and Transfers, Urgent Supplementals, and Correcting Enrollment Errors Act of 1989 or HR-2402 included, among other things, a prohibition on the use of Department of the Interior funds to place the Al Capone House in Chicago, Illinois, on the National Register of Historic Places.
Based on the NLSRT report, Seielstad and Vanden Bout had stated that a new telescope would be 70 meters (230 feet) in diameter and would cost about $50 million. Either Byrd misunderstood, or deliberately chose to appear that he misunderstood, and with the agreement of White House Office of Management and Budget Director, Richard Darman, Robert Byrd inserted $75 million into the FY1989 Senate Dire Emergency Act for the replacement of the NRAO 300 Foot Radio Telescope. In the House of Representatives, the radio telescope was competing with a pet project of the House Appropriations Committee Chair Jamie Whitten and a White House initiative for the war on drugs.
In a compromise with the House of Representatives, the final bill, which became Public Law 101-45, spread funds for the radio telescope over two years. A similar amount was included for Whitten’s project in Mississippi, as well as funds for the war on drugs. On 23 June 1989, the House bill passed by a vote of 316-8 and the Senate approved it by a voice vote.Footnote 97 A week later, it was signed into law by President George H. W. Bush. However in 1990, as a consequence of the Gramm-Rudman-Hollings sequestration for FY1990, the GBT construction funds were reduced to $74,490,000.
Trying to avoid the stigma of apparent “pork” that the NSF and especially Erich Bloch were so strongly opposed to, Byrd noted when introducing the bill in Congress the priority placed by radio astronomers in replacing the fallen telescope, which he described as a “calamity.” In fact, replacing the 300 Foot was not the highest priority in radio astronomy, even at NRAO, which was trying to obtain funds to construct a new array that would give astronomers an unprecedented opportunity to study the Universe at millimeter wavelengths. Meanwhile, the NSF was faced with a quandary. To oppose the powerful Senators might risk future budget allocations, but to agree to building a new telescope apparently meant compromising their stated priority for LIGO as the next major NSF construction project, as well as their commitment to the merits of peer review and their opposition to Congressional “earmarks.”
Unlike NASA, the NSF for years did not have a standing budget line item for new facilities. However, by unwritten agreement, the 1989/90 GBT funding became the first funding for what later became the NSF’s Major Research Equipment (later called Major Research Equipment and Facilities Construction or MREFC) budget, which later funded LIGO, the Atacama Large Millimeter Array (ALMA), the Next Generation Solar Telescope (NGST), and most recently the Large Synoptic Survey Telescope (LSST). At first the MRE/MREFC budget line was confined to the NSF’s Directorate for Mathematical and Physical Sciences (MPS), but with time soon covered all of the NSF. Nevertheless, the NSF has always been on record as being opposed to Congressional earmarks, and subsequent declining NRAO budgets and consideration of closing the Green Bank facility as well as the Very Long Baseline Array (VLBA) may have reflected the Foundation’s resentment of the perceived political pressure brought to bear in funding the new Green Bank Telescope.