Question Answering for Link Prediction and Verification

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11762)


In this work we tackle the link prediction task in knowledge graphs. Following recent success of Question Answering systems in outperforming humans, we employ the developed tools to identify and verify new links. To identify the gaps in a knowledge graph, we use the existing techniques and combine them with Question Answering tools to extract concealed knowledge. We outline the overall procedure and discuss preliminary results.


Link prediction Knowledge graph completion Question answering Relation extraction 


  1. 1.
    Bhatia, S., Dwivedi, P., Kaur, A.: That’s interesting, tell me more! Finding descriptive support passages for knowledge graph relationships. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 250–267. Springer, Cham (2018). Scholar
  2. 2.
    Bhogal, J., Macfarlane, A., Smith, P.: A review of ontology based query expansion. Inform. Process. Manage. 43(4), 866–886 (2007)CrossRefGoogle Scholar
  3. 3.
    d’Amato, C., Staab, S., Tettamanzi, A.G.B., Minh, T.D., Gandon, F.: Ontology enrichment by discovering multi-relational association rules from ontological knowledge bases. In: ACM, vol. 31, pp. 333–338 (2016)Google Scholar
  4. 4.
    Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018)Google Scholar
  5. 5.
    Ell, B., Harth, A.: A language-independent method for the extraction of RDF verbalization templates. In: INLG 2014, pp. 26–34 (2014)Google Scholar
  6. 6.
    Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). Scholar
  7. 7.
    Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: ACL 2015, Volume 1: Long Papers, pp. 687–696 (2015)Google Scholar
  8. 8.
    Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, pp. 2181–2187 (2015)Google Scholar
  9. 9.
    Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable questions for squad. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, pp. 784–789 (2018)Google Scholar
  10. 10.
    Sanchez-Cisneros, D., Aparicio Gali, F.: UEM-UC3M: an ontology-based named entity recognition system for biomedical texts. In: SemEval 2013, pp. 622–627. Association for Computational Linguistics (2013)Google Scholar
  11. 11.
    Schutz, A., Buitelaar, P.: RelExt: a tool for relation extraction from text in ontology extension. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 593–606. Springer, Heidelberg (2005). Scholar
  12. 12.
    Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: AAAI 2014, pp. 1112–1119 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Semantic Web CompanyViennaAustria

Personalised recommendations