Skip to main content

Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification

  • Conference paper
  • First Online:
Static Analysis (SAS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 11822))

Included in the following conference series:

Abstract

Deep neural networks (DNNs) have been shown lack of robustness, as they are vulnerable to small perturbations on the inputs, which has led to safety concerns on applying DNNs to safety-critical domains. Several verification approaches have been developed to automatically prove or disprove safety properties for DNNs. However, these approaches suffer from either the scalability problem, i.e., only small DNNs can be handled, or the precision problem, i.e., the obtained bounds are loose. This paper improves on a recent proposal of analyzing DNNs through the classic abstract interpretation technique, by a novel symbolic propagation technique. More specifically, the activation values of neurons are represented symbolically and propagated forwardly from the input layer to the output layer, on top of abstract domains. We show that our approach can achieve significantly higher precision and thus can prove more properties than using only abstract domains. Moreover, we show that the bounds derived from our approach on the hidden neurons, when applied to a state-of-the-art SMT based verification tool, can improve its performance. We implement our approach into a software tool and validate it over a few DNNs trained on benchmark datasets such as MNIST, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability Statements

The datasets/code generated during and/or analysed during the current study are available in the Figshare repository: https://doi.org/10.6084/m9.figshare.9861059.v1

Notes

  1. 1.

    https://github.com/ljlin/Apron_Elina_fork.

  2. 2.

    https://github.com/eth-sri/ELINA/commit/152910bf35ff037671c99ab019c1915e93dde57f.

References

  1. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012). https://doi.org/10.1109/MSP.2012.2205597

    Article  Google Scholar 

  2. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 39–57. IEEE (2017)

    Google Scholar 

  3. Cousot, P., Cousot, R.: Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: Fourth ACM Symposium on Principles of Programming Languages (POPL), pp. 238–252 (1977)

    Google Scholar 

  4. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for deep feedforward neural networks. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.) NFM 2018. LNCS, vol. 10811, pp. 121–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77935-5_9

    Chapter  Google Scholar 

  5. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T.A., Kohli, P.: A dual approach to scalable verification of deep networks. CoRR abs/1803.06567 (2018). http://arxiv.org/abs/1803.06567

  6. Dy, J.G., Krause, A. (eds.): Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018, JMLR Workshop and Conference Proceedings, vol. 80. JMLR.org (2018). http://proceedings.mlr.press/v80/

  7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp. 269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2_19

    Chapter  Google Scholar 

  8. von Essen, C., Giannakopoulou, D.: Analyzing the next generation airborne collision avoidance system. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 620–635. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_54

    Chapter  Google Scholar 

  9. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI\(^2\): safety and robustness certification of neural networks with abstract interpretation. In: 2018 IEEE Symposium on Security and Privacy (S&P 2018), pp. 948–963 (2018)

    Google Scholar 

  10. Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02658-4_47

    Chapter  Google Scholar 

  11. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_1

    Chapter  Google Scholar 

  12. Jeannin, J., et al.: Formal verification of ACAS x, an industrial airborne collision avoidance system. In: Girault, A., Guan, N. (eds.) 2015 International Conference on Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, 4–9 October 2015, pp. 127–136. IEEE (2015). https://doi.org/10.1109/EMSOFT.2015.7318268

  13. Julian, K.D., Kochenderfer, M.J., Owen, M.P.: Deep neural network compression for aircraft collision avoidance systems. CoRR abs/1810.04240 (2018). http://arxiv.org/abs/1810.04240

  14. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_5

    Chapter  Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Bartlett, P.L., Pereira, F.C.N., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held, Lake Tahoe, Nevada, United States, 3–6 December 2012, pp. 1106–1114 (2012). http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks

  16. Lécun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  17. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward ReLU neural networks. In: KR2018 (2018)

    Google Scholar 

  18. Miné, A.: Tutorial on static inference of numeric invariants by abstract interpretation. Found. Trends Program. Lang. 4(3–4), 120–372 (2017)

    Article  Google Scholar 

  19. Narodytska, N., Kasiviswanathan, S.P., Ryzhyk, L., Sagiv, M., Walsh, T.: Verifying properties of binarized deep neural networks. arXiv preprint arXiv:1709.06662 (2017)

  20. Neumaier, A., Shcherbina, O.: Safe bounds in linear and mixed-integer linear programming. Math. Program. 99(2), 283–296 (2004). https://doi.org/10.1007/s10107-003-0433-3

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 427–436 (2015)

    Google Scholar 

  22. Papernot, N., McDaniel, P.D., Jha, S., Fredrikson, M., Celik, Z.B., Swami, A.: The limitations of deep learning in adversarial settings. CoRR abs/1511.07528 (2015). http://arxiv.org/abs/1511.07528

  23. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_24

    Chapter  Google Scholar 

  24. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural networks with provable guarantees. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, Stockholm, Sweden, 13–19 July 2018, pp. 2651–2659. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/368

  25. Ruan, W., Wu, M., Sun, Y., Huang, X., Kroening, D., Kwiatkowska, M.: Global robustness evaluation of deep neural networks with provable guarantees for the hamming distance. In: IJCAI2019 (2019)

    Google Scholar 

  26. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016). https://doi.org/10.1038/nature16961

    Article  Google Scholar 

  27. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.T.: Fast and effective robustness certification. In: Bengio, S., Wallach, H.M., Larochelle, H., Grauman, K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, Montréal, Canada, 3–8 December 2018, pp. 10825–10836 (2018). http://papers.nips.cc/paper/8278-fast-and-effective-robustness-certification

  28. Singh, G., Gehr, T., Püschel, M., Vechev, M.T.: An abstract domain for certifying neural networks. PACMPL 3(POPL), 41:1–41:30 (2019). https://dl.acm.org/citation.cfm?id=3290354

    Article  Google Scholar 

  29. Szegedy, C., et al.: Intriguing properties of neural networks. In: International Conference on Learning Representations (ICLR2014) (2014)

    Google Scholar 

  30. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of neural networks using symbolic intervals. CoRR abs/1804.10829 (2018). http://arxiv.org/abs/1804.10829

  31. Weng, T., Zhang, H., Chen, H., Song, Z., Hsieh, C., Daniel, L., Boning, D.S., Dhillon, I.S.: Towards fast computation of certified robustness for relu networks. In: Dy and Krause [7], pp. 5273–5282. http://proceedings.mlr.press/v80/weng18a.html

  32. Wicker, M., Huang, X., Kwiatkowska, M.: Feature-guided black-box safety testing of deep neural networks. In: Beyer, D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 408–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_22

    Chapter  Google Scholar 

  33. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the convex outer adversarial polytope. In: Dy and Krause [7], pp. 5283–5292. http://proceedings.mlr.press/v80/wong18a.html

  34. Wu, M., matthew Wicker, Ruan, W., Huang, X., Kwiatkowska, M.: A game-based approximate verification of deep neural networks with provable guarantees. Theor. Comput. Sci. (2019)

    Google Scholar 

  35. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and verification for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst. 29(11), 5777–5783 (2018). https://doi.org/10.1109/TNNLS.2018.2808470

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Guangdong Science and Technology Department (No. 2018B010107004) and the NSFC Program (No. 61872445). We also thank anonymous reviewers for detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqian Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Liu, J., Yang, P., Chen, L., Huang, X., Zhang, L. (2019). Analyzing Deep Neural Networks with Symbolic Propagation: Towards Higher Precision and Faster Verification. In: Chang, BY. (eds) Static Analysis. SAS 2019. Lecture Notes in Computer Science(), vol 11822. Springer, Cham. https://doi.org/10.1007/978-3-030-32304-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32304-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32303-5

  • Online ISBN: 978-3-030-32304-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics