Skip to main content

Origins of Sperm DNA Damage

  • Chapter
  • First Online:
Male Infertility

Abstract

Male infertility is increasing in recent decades, affecting 7% of males during their reproductive life. The standard semen analysis remains widely used, specifically sperm concentration, motility, viability, and normal sperm morphology. However, this analysis is limited in clinical usefulness without information of the functional capacity of the spermatozoa. Increased DNA fragmentation in spermatozoa is associated with over 80% of male infertility cases. Numerous pathologies associated with male infertility have a detrimental effect on spermatozoa chromatin condensation and DNA integrity through the spermatogenesis pathways, epididymal maturation, and post-ejaculations. Spermatozoa DNA damage is the consequence of modifications of the molecular structure of the DNA, causing structural changes in the DNA that prevents replication mechanisms from optimal functioning. The determination of DNA fragmentation or damage in spermatozoa has emerged as a stable parameter with lower variability and better predictability for infertility, pregnancy complications, and health outcomes of the offspring. Mechanisms of DNA modifications include chemical modification of bases such as 8-oxo-2′-doxyguanosine (8-OHdG), single-strand breaks, double-strand breaks, base missing from the DNA backbone, modifications in purine, pyrimidine, and deoxyribose, introduction of a basic sites, and DNA cross-linking. Origins of DNA damage include endogenous causes, predominantly associated with ROS. Exogenous DNA damage is caused by radiation, genital heat stress, toxins, or mutagenic exposure. Pathology and risk factors associated with causing DNA fragmentation include varicocele, scrotal hyperthermia, genital tract infections and leukocytospermia, poor lifestyle habits, obesity and diabetes, environmental toxins, cancer and chemotherapy, radiation, medications, and aging. These are mediated through inflammation, ROS, chromatin remodeling, and increased apoptosis in germ cell lines and spermatozoa. However, more research into the causes and mechanisms of DNA fragmentation is recommended, as well as standardization of appropriate assessment tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nieschlag E. Scope and goals of andrology. In: Nieschlag E, Behre H, Nieschlag S, editors. Andrology: male reproductive health and dysfunction. 3rd ed. Heidelberg/Dordrecht/London/New York: Springer; 2010. p. 1–10.

    Chapter  Google Scholar 

  2. Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.

    PubMed  PubMed Central  Google Scholar 

  3. Iwasaki A, Gagnon C. Formation of reactive oxygen species in spermatozoa of infertile patients. Fertil Steril. 1992;57:409–16.

    CAS  PubMed  Google Scholar 

  4. de Lamirande E, Gagnon C. Capacitation-associated production of superoxide anion by human spermatozoa. Free Radic Biol Med. 1995;18:487–95.

    Article  PubMed  Google Scholar 

  5. Padron OF, Brackett NL, Sharma RK, Lynne CM, Thomas AJ Jr, Agarwal A. Seminal reactive oxygen species and sperm motility and morphology in men with spinal cord injury. Fertil Steril. 1997;67:1115–20.

    Article  CAS  PubMed  Google Scholar 

  6. Agarwal A, Said TM. Oxidative stress, DNA damage and apoptosis in male infertility: a clinical approach. BJU Int. 2005;95:503–7.

    Article  CAS  PubMed  Google Scholar 

  7. Barratt CL, Björndahl L, Menkveld R, Mortimer D. ESHRE special interest group for andrology basic semen analysis course: a continued focus on accuracy, quality, efficiency and clinical relevance. Hum Reprod. 2011;26:3207–12.

    Article  CAS  PubMed  Google Scholar 

  8. Sanchez V, Wistuba J, Mallidis C. Semen analysis: update on clinical value, current needs and future perspectives. Reproduction. 2013;146:R249–58.

    Article  CAS  PubMed  Google Scholar 

  9. Romeo C, Ientile R, Santoro G, Impellizzeri P, Turiaco N, Impala P, et al. Nitric oxide production is increased in the spermatic veins of adolescents with left idiophatic varicocele. J Pediatr Surg. 2001;36:389–93.

    Article  CAS  PubMed  Google Scholar 

  10. Hendin BN, Kolettis PN, Sharma RK, Thomas AJ Jr, Agarwal A. Varicocele is associated with elevated spermatozoal reactive oxygen species production and diminished seminal plasma antioxidant capacity. J Urol. 1999;161:1831–4.

    Article  CAS  PubMed  Google Scholar 

  11. Tomlinson MJ. Uncertainty of measurement and clinical value of semen analysis: has standardisation through professional guidelines helped or hindered progress? Andrology. 2016;4:763–70.

    Article  CAS  PubMed  Google Scholar 

  12. Agarwal A, Zini A, Sigman M. Is sperm DNA integrity assessment useful? J Urol. 2013;190:1645–7.

    Article  PubMed  Google Scholar 

  13. Lewis SE, Aitken RJ, Conner SJ, Iuliis GD, Evenson DP, Henkel R, et al. The impact of sperm DNA damage in assisted conception and beyond: recent advances in diagnosis and treatment. Reprod Biomed Online. 2013;27:325–37.

    Article  CAS  PubMed  Google Scholar 

  14. Esteves SC, Agarwal A, Cho CL, Majzoub A. A strengths-weaknesses-opportunities-threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Transl Androl Urol. 2017;6(Suppl 4):S734–S60.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sun TC, Zhang Y, Li HT, Liu XM, Yi DX, Tian L, et al. Sperm DNA fragmentation index, as measured by sperm chromatin dispersion, might not predict assisted reproductive outcome. Taiwan J Obstet Gynecol. 2018;57:493–8.

    Article  PubMed  Google Scholar 

  16. Zini A, Kamal K, Phang D, Willis J, Jarvi K. Biologic variability of sperm DNA denaturation in infertile men. Urology. 2001;58:258–61.

    Article  CAS  PubMed  Google Scholar 

  17. Agarwal A, Cho CL, Majzoub A, Esteves SC. The society for translational medicine: clinical practice guidelines for sperm DNA fragmentation testing in male infertility. Transl Androl Urol. 2017;6(Suppl 4):S720–S33.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Köhler K, Ferreira P, Pfander B, Boos D. The initiation of DNA replication in Eukaryotes. In: Kaplan DL, editor. The initiation of DNA replication in eukaryotes. Cham: Springer; 2016. p. 443–60.

    Chapter  Google Scholar 

  19. Gunes S, Sertyel S. Sperm DNA damage and oocyte repair capability. In: Zini A, Agarwal A, editors. A Clinician’s guide to sperm DNA and chromatin damage. Cham: Springer; 2018. p. 321–46.

    Chapter  Google Scholar 

  20. Singh A, Agarwal A. The role of sperm chromatin integrity and DNA damage on male infertility. Open Reprod Sci J. 2011;3:65–71.

    Article  CAS  Google Scholar 

  21. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fert Dev. 2016;28:1–10.

    Article  CAS  Google Scholar 

  22. Li Z, Yang J, Huang H. Oxidative stress induces H2AX phosphorylation in human spermatozoa. FEBS Lett. 2006;580:6161–8.

    Article  CAS  PubMed  Google Scholar 

  23. Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res. 2015;43:10083–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Hosen MB, Islam MR, Begum F, Kabir Y, Howlader MZ. Oxidative stress induced sperm DNA damage, a possible reason for male infertility. Iran J Reprod Med. 2015;13:525–32.

    PubMed  PubMed Central  Google Scholar 

  25. Lodish H, Berk A, Matsudaira P, Kaiser CA, Krieger M, Scott MP, et al. Signal Gradients Can Induce Different Cell Fate. In: Geckil H, Özmen M, Yesilada Ö (eds.); WH Freeman Publishers. Molecular Biology of the Cell. 5th ed. New York; 2004. p. 963.

    Google Scholar 

  26. Henkel R, Hajimohammad M, Stalf T, Hoogendijk C, Mehnert C, Menkveld R, et al. Influence of deoxyribonucleic acid damage on fertilization and pregnancy. Fertil Steril. 2004;81:965–72.

    Article  CAS  PubMed  Google Scholar 

  27. Tesarik J, Greco E, Mendoza C. Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod. 2004;19:611–5.

    Article  CAS  PubMed  Google Scholar 

  28. Menezo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18:357–65.

    Article  CAS  PubMed  Google Scholar 

  29. Aitken RJ, Krausz C. Oxidative stress, DNA damage and the Y chromosome. Reproduction. 2001;122:497–506.

    Article  CAS  PubMed  Google Scholar 

  30. O’Donnell L. Mechanisms of spermiogenesis and spermiation and how they are disturbed. Spermatogenesis. 2015;4:e979623.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Henkel R. ROS and DNA integrity – implications of male accessory gland infections. In: Björndahl L, Giwercman A, Tournaye H, Weidner W, editors. Clinical Andrology. London: Informa Healthcare (incorporating Parthenon Publishing, Marcel Dekker, and Taylor & Francis Medical; 2010. p. 324–8.

    Chapter  Google Scholar 

  32. Platt N, da Silva RP, Gordon S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol. 1998;8(9):365–72.

    Article  CAS  PubMed  Google Scholar 

  33. Jones R, Mann T, Sherins RJ. Adverse effects of peroxidized lipid on human spermatozoa. Proc R Soc Lond B Biol Sci. 1978;201:413–7.

    Article  CAS  PubMed  Google Scholar 

  34. Moazamian R, Polhemus A, Connaughton H, Fraser B, Whiting S, Gharagozloo P, et al. Oxidative stress and human spermatozoa: diagnostic and functional significance of aldehydes generated as a result of lipid peroxidation. Mol Hum Reprod. 2015;21:502–15.

    Article  CAS  PubMed  Google Scholar 

  35. Aitken RJ, Whiting S, De Iuliis GN, Mc Clymont S, Mitchell LA, Baker MA. Electrophilic aldehydes generated by sperm metabolism activate mitochondrial reactive oxygen species generation and apoptosis by targeting succinate dehydrogenase. J Biol Chem. 2012;287:33048–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Torregrosa N, Dominguez-Fandos D, Camejo MI, Shirley CR, Meistrich ML, Ballesca JL, et al. Protamine 2 precursors, protamine 1/protamine 2 ratio, DNA integrity and other sperm parameters in infertile patients. Hum Reprod. 2006;21:2084–9.

    Article  CAS  PubMed  Google Scholar 

  37. Mc Pherson SM, Longo FJ. Localization of DNAse I-hypersensitive regions during rat spermatogenesis: stage dependent patterns and unique sensitivity of elongating spermatids. Mol Reprod Dev. 1992;31:268–79.

    Article  CAS  Google Scholar 

  38. Mc Pherson SMG, Longo FJ. Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Develop Biol. 1993;158:122–30.

    Article  CAS  Google Scholar 

  39. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44:569–74.

    Article  CAS  PubMed  Google Scholar 

  40. Sakkas D, Manicardi G, Bianchi PG, Bizzaro D, Bianchi U. Relationship between the presence of endogenous nicks and sperm chromatin packing in maturing and fertilizing mouse spermatozoa. Biol Reprod. 1995;52:1149–55.

    Article  CAS  PubMed  Google Scholar 

  41. Marcon L, Boissonneault G. Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod. 2004;70:910–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hirano T. The ABCs of SMC proteins: two-armed ATPases for chromosome condensation, cohesion, and repair. Genes Dev. 2002;16:399–414.

    Article  CAS  PubMed  Google Scholar 

  43. Cuvier O, Hirano T. A role of topoisomerase II in linking DNA replication to chromosome condensation. J Cell Biol. 2003;160:645–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sakkas D, Seli E, Bizzaro D, Tarozzi N, Manicardi GC. Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. RBM Online. 2003;7(Comp. 1):31–5.

    Google Scholar 

  45. Leduc F, Maquennehan V, Nkoma GB, Boissonneault G. DNA damage response during chromatin remodeling in elongating spermatids of mice. Biol Reprod. 2008;8:324–32.

    Article  CAS  Google Scholar 

  46. Meyer-Ficca ML, Lonchar JD, Ihara M, Meistrich ML, Austin CA, Meyer RG. Poly(ADP-ribose) polymerases PARP1 and PARP2 modulate topoisomerase II beta (TOP2B) function during chromatin condensation in mouse spermiogenesis. Biol Reprod. 2011;84:900–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Evenson DP, Darzynkiewicz Z, Melamed MR. Comparison of human and mouse sperm chromatin structure by flow cytometry. Chromosoma. 1980;78:225–38.

    Article  CAS  PubMed  Google Scholar 

  48. Evenson DP. Flow cytometric analysis of male germ cell quality. Methods Cell Biol. 1990;33:401–10.

    Article  CAS  PubMed  Google Scholar 

  49. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of DNA protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49:1083–8.

    Article  CAS  PubMed  Google Scholar 

  50. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207:202–5.

    Article  CAS  PubMed  Google Scholar 

  51. Manicardi GC, Bianchi PG, Pantano S, Azzoni P, Bizzaro D, Bianchi U, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52:864–7.

    Article  CAS  PubMed  Google Scholar 

  52. Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF. Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril. 1998;69:528–32.

    Article  CAS  PubMed  Google Scholar 

  53. Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111:483–8.

    Article  PubMed  Google Scholar 

  54. Rousseaux S, Boussouar F, Gaucher J, Reynoird N, Montellier E, Curtet S, et al. Molecular models for post-meiotic male genome reprogramming. Syst Biol Reprod Med. 2011;57:50–3.

    Article  PubMed  Google Scholar 

  55. Lewis SE, Aitken RJ. DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res. 2005;322:33–41.

    Article  CAS  PubMed  Google Scholar 

  56. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–35.

    Article  CAS  PubMed  Google Scholar 

  57. Marchesi DE, Feng HL. Sperm DNA integrity from sperm to egg. J Androl. 2007;28:481–9.

    Article  CAS  PubMed  Google Scholar 

  58. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000;157:1415–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Green DR. Overview: apoptotic signaling pathways in the immune system. Immunol Rev. 2003;193:5–9.

    Article  CAS  PubMed  Google Scholar 

  60. Desagher S, Martinou JC. Mitochondria as the central control point of apoptosis. Trends Cell Biol. 2000;10:369–77.

    Article  CAS  PubMed  Google Scholar 

  61. Koppers AJ, Mitchell LA, Wang P, Lin M, Aitken RJ. Phosphoinositide-3-kinase signaling pathway involvement in a truncated apoptotic cascade associated with motility loss and oxidative DNA damage in human spermatozoa. Biochem J. 2011;436:687–98.

    Article  CAS  PubMed  Google Scholar 

  62. Ohno M, Sakumi K, Fukumura R, Furuichi M, Iwasaki Y, Hokama M, et al. 8-oxoguanine causes spontaneous de novo germline mutations in mice. Sci Rep. 2014;4:4689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gorelick JI, Goldstein M. Loss of fertility in men with varicocele. Fertil Steril. 1993;59:613–6.

    Article  CAS  PubMed  Google Scholar 

  64. Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male infertility in the era of assisted reproductive technology. Int J Urol. 2012;19:538–50.

    Article  CAS  PubMed  Google Scholar 

  65. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl. 2016;18:186–93.

    Article  CAS  PubMed  Google Scholar 

  66. Ikeda M, Kodama H, Fukuda J, Shimizu Y, Murata M, Kumagai J, et al. Role of radical oxygen species in rat testicular germ cell apoptosis induced by heat stress. Biol Reprod. 1999;61:393–9.

    Article  CAS  PubMed  Google Scholar 

  67. Morgan D, Cherny VV, Murphy R, Xu W, Thomas LL, De Coursey TE. Temperature dependence of NADPH oxidase in human eosinophils. J Physiol. 2003;550:447–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9:678–90.

    Article  CAS  PubMed  Google Scholar 

  69. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2012;10:26–37.

    Article  CAS  PubMed  Google Scholar 

  70. Allamaneni SSR, Naughton CK, Sharma RK, Thomas AJ Jr, Agarwal A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil Steril. 2004;82:1684–6.

    Article  PubMed  Google Scholar 

  71. Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int. 2007;100:863–6.

    Article  CAS  PubMed  Google Scholar 

  72. Abd-Elmoaty MA, Saleh R, Sharma R, Agarwal A. Increased levels of oxidants and reduced antioxidants in semen of infertile men with varicocele. Fertil Steril. 2010;94:1531–4.

    Article  CAS  PubMed  Google Scholar 

  73. Rajfer J, Turner TT, Rivera F, Howards SS, Sikka SC. Inhibition of testicular testosterone biosynthesis following experimental varicocele in rats. Biol Reprod. 1987;36:933–7.

    Article  CAS  PubMed  Google Scholar 

  74. Sofikitis N, Miyagawa I. Effects of surgical repair of experimental left varicocele on testicular temperature, spermatogenesis, sperm maturation, endocrine function, and fertility in rabbits. Arch Androl. 1992;29:163–75.

    Article  CAS  PubMed  Google Scholar 

  75. Hadziselimovic F, Herzog B. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet. 2001;358:1156–7.

    Article  CAS  PubMed  Google Scholar 

  76. Guo J, Jia Y, Tao SX, Li YC, Zhang XS, Hu ZY, et al. Expression of nitric oxide synthase during germ cell apoptosis in testis of cynomolgus monkey after testosterone and heat treatment. J Androl. 2009;30:190–9.

    Article  CAS  PubMed  Google Scholar 

  77. Paul C, Murray AA, Spears N, Saunders PT. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction. 2008;136:73–84.

    Article  CAS  PubMed  Google Scholar 

  78. Jung A, Schill WB, Schuppe HC. Improvement of semen quality by nocturnal scrotal cooling in oligozoospermic men with a history of testicular maldescent. Int J Androl. 2005;28:93–8.

    Article  CAS  PubMed  Google Scholar 

  79. Tüttelmann F, Nieschlag E. Classification of andrological disorders. In: Nieschlag E, Behre H, Nieschlag S, editors. Andrology: male reproductive health and dysfunction. 2nd ed. Heidelberg/Dordrecht/London/New York: Springer. p. 87–92.

    Google Scholar 

  80. Lustig L, Allam JP. Guest editors foreword. Andrologia. 2018;50:e13186.

    Article  PubMed  Google Scholar 

  81. Henkel R, Maaß G, Jung A, Haidl G, Schill WB, Schuppe HC. Age-related changes in seminal polymorphonuclear elastase in men with asymptomatic inflammation of the genital tract. Asian J Androl. 2007;9:299–304.

    Article  CAS  PubMed  Google Scholar 

  82. Weidner W, Krause W, Ludwig M. Relevance of male accessory gland infection for subsequent fertility with special focus on prostatitis. Hum Reprod Update. 1999;5:421–32.

    Article  CAS  PubMed  Google Scholar 

  83. Schuppe HC, Meinhardt A. Immunology of the testis and the excurrent ducts. In: Schill W-B, Comhaire F, Hargreave TB, editors. Andrology for the clinician. Heidelberg: Springer; 2006. p. 292–300.

    Chapter  Google Scholar 

  84. Kiessling AA, Desmarais BM, Yin HZ, Loverde J, Eyre RC. Detection and identification of bacterial DNA in semen. Fertil Steril. 2008;90:1744–56.

    Article  CAS  PubMed  Google Scholar 

  85. Plante M, de Lamirande E, Gagnon C. Reactive oxygen species released by activated neutrophils, but not by deficient spermatozoa, are sufficient to affect normal sperm motility. Fertil Steril. 1994;62:387–93.

    Article  CAS  PubMed  Google Scholar 

  86. Comhaire FH, Mahmoud AM, Depuydt CE, Zalata AA, Christophe AB. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: the andrologist’s viewpoint. Hum Reprod Update. 1999;5:393–8.

    Article  CAS  PubMed  Google Scholar 

  87. Kocak I, Yenisey C, Dündar M, Okyay P, Serter M. Relationship between seminal plasma interleukin-6 and tumor necrosis factor alpha levels with semen parameters in fertile and infertile men. Urol Res. 2002;30:263–7.

    Article  CAS  PubMed  Google Scholar 

  88. Motrich RD, Maccioni M, Molina R, Tissera A, Olmedo J, Riera CM, et al. Reduced semen quality in chronic prostatitis patients that have cellular autoimmune response to prostate antigens. Hum Reprod. 2005;20:2567–72.

    Article  PubMed  Google Scholar 

  89. Martinez P, Proverbio F, Camejo MI. Sperm lipid peroxidation and pro-inflammatory cytokines. Asian J Androl. 2007;9:102–7.

    Article  CAS  PubMed  Google Scholar 

  90. Danielewicz A, Przybyłowicz KE, Przybyłowicz M. Dietary patterns and poor semen quality risk in men: a cross-sectional study. Nutrients. 2018;10(9):pii: E1162.

    Article  CAS  Google Scholar 

  91. Salas-Huetos A, Bulló M, Salas-Salvadó J. Dietary patterns, foods and nutrients in male fertility parameters and fecundability: a systematic review of observational studies. Hum Reprod Update. 2017;23(4):371–89.

    Article  CAS  PubMed  Google Scholar 

  92. Giahi L, Mohammadmoradi S, Javidan A, Sadeghi MR. Nutritional modifications in male infertility: a systematic review covering 2 decades. Nutr Rev. 2016;74(2):118–30.

    Article  PubMed  Google Scholar 

  93. Karayiannis D, Kontogianni MD, Mendorou C, Douka L, Mastrominas M, Yiannakouris N. Association between adherence to the Mediterranean diet and semen quality parameters in male partners of couples attempting fertility. Hum Reprod. 2016;32(1):215–22.

    PubMed  Google Scholar 

  94. Gaskins AJ, Colaci DS, Mendiola J, Swan SH, Chavarro JE. Dietarypatterns and semen quality in youngmen. Hum Reprod. 2012;27(10):2899–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ricci E, Al-Beitawi S, Cipriani S, Alteri A, Chiaffarino F, Candiani M, Gerli S, Viganó P, Parazzini F. Dietary habits and semen parameters: a systematic narrative review. Andrology. 2018;6(1):104–16.

    Article  CAS  PubMed  Google Scholar 

  96. Vujkovic M, de Vries JH, Dohle GR, Bonsel GJ, Lindemans J, Macklon NS, van der Spek PJ, Steegers EA, Steegers-Theunissen RP. Associations between dietary patterns and semen quality in men undergoing IVF/ICSI treatment. Hum Reprod. 2009;24(6):1304–12.

    Article  CAS  PubMed  Google Scholar 

  97. Siddeek B, Mauduit C, Simeoni U, Benahmed M. Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. Mutat Res. 2018;778:38–44.

    Article  CAS  Google Scholar 

  98. Soubry A. Epigenetic inheritance and evolution: a paternal perspective on dietary influences. Prog Biophys Mol Biol. 2015;118(1-2):79–85.

    Article  CAS  PubMed  Google Scholar 

  99. Anderson EJ, Lustig ME, Boyle KE, Woodlief TL, Kane DA, Lin CT, Price JW 3rd, Kang L, Rabinovitch PS, Szeto HH, Houmard JA, Cortright RN, Wasserman DH, Neufer PD. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest. 2009;119(3):573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Emami SR, Jafari M, Haghshenas R, Ravasi A. Impact of eight weeks endurance training on biochemical parameters and obesity-induced oxidative stress in high fat diet-fed rats. J Exerc Nutrition Biochem. 2016;20(1):29–35.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rato L, Alves MG, Cavaco JE, Oliveira PF. High-energy diets: a threat for male fertility? Obes Rev. 2014;15(12):996–1007.

    Article  CAS  PubMed  Google Scholar 

  102. Rato L, Alves MG, Dias TR, Lopes G, Cavaco JE, Socorro S, Oliveira PF. High-energy diets may induce a pre-diabetic state altering testicular glycolytic metabolic profile and male reproductive parameters. Andrology. 2013;1(3):495–504.

    Article  CAS  PubMed  Google Scholar 

  103. Via M. The malnutrition of obesity: micronutrient deficiencies that promote diabetes. ISRN Endocrinol. 2012;2012:103472.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Agarwal A, Roychoudhury S, Bjugstad KB, Cho CL. Oxidation-reduction potential of semen: what is its role in the treatment of male infertility? Ther Adv Urol. 2016;8(5):302–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zini A, San Gabriel M, Baazeem A. Antioxidants and sperm DNA damage: a clinical perspective. J Assist Reprod Genet. 2009;26(8):427–32.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed. 2016;14(12):729–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Vrolijk MF, Opperhuizen A, Jansen EH, Godschalk RW, Van Schooten FJ, Bast A, Haenen GR. The shifting perception on antioxidants: the case of vitamin E and β-carotene. Redox Biol. 2015;4:272–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Castagné V, Lefèvre K, Natero R, Clarke PG, Bedker DA. An optimal redox status for the survival of axotomized ganglion cells in the developing retina. Neuroscience. 1999;93:313–20.

    Article  PubMed  Google Scholar 

  109. Henkel R. Leukocytes and oxidative stress: dilemma for sperm function and male fertility. Asian J Androl. 2011;13:43–52.

    Article  CAS  PubMed  Google Scholar 

  110. Sermondade N, Faure C, Fezeu L, Shayeb AG, Bonde JP, Jensen TK, et al. BMI in relation to sperm count: an updated systematic review and collaborative meta-analysis. Hum Reprod Update. 2013;19(3):221–31.

    Article  CAS  PubMed  Google Scholar 

  111. Muzi-Filho H, Bezerra CGP, Souza AM, Boldrini LC, Takiya CM, Oliveira FL, et al. Undernutrition affects cell survival, oxidative stress, Ca2+handling and signaling pathways in Vas Deferens, crippling reproductive capacity. PLoS One. 2013;8(7):e69682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Genovese P, Núñez ME, Pombo C, Bielli A. Undernutrition during foetal and post-natal life affects testicular structure and reduces the number of Sertoli cells in the adult rat. Reprod Domest Anim. 2010;45(2):233–6.

    Article  CAS  PubMed  Google Scholar 

  113. Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Moatt JP, Nakagawa S, Lagisz M, Walling CA. The effect of dietary restriction on reproduction: a meta-analytic perspective. BMC Evol Biol. 2016;16(1):199.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Adler MI, Cassidy EJ, Fricke C, Bonduriansky R. The lifespan-reproduction trade-off under dietary restriction is sex-specific and context-dependent. Exp Gerontol. 2013;48(6):539–48.

    Article  PubMed  Google Scholar 

  116. Mc Pherson NO, Lane M. Male obesity and subfertility, is it really about increased adiposity? Asian J Androl. 2015;17(3):450–8.

    Google Scholar 

  117. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA, Fruchart JC, James WP, Loria CM, Smith SC Jr. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation. 2009;120(16):1640–5.

    Article  CAS  PubMed  Google Scholar 

  118. Kahn BE, Brannigan RE. Obesity and male infertility. Curr Opin Urol. 2017;27(5):441–5.

    Article  PubMed  Google Scholar 

  119. Leisegang K, Bouic PJ, Henkel RR. Metabolic syndrome is associated with increased seminal inflammatory cytokines and reproductive dysfunction in a case-controlled male cohort. Am J Reprod Immunol. 2016;76(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  120. Liu Y, Ding Z. Obesity, a serious etiologic factor for male subfertility in modern society. Reproduction. 2017;154(4):R123–31.

    Article  PubMed  Google Scholar 

  121. Omu AE. Sperm parameters: paradigmatic index of good health and longevity. Med Princ Pract. 2013;22(Suppl 1):30–42.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Bakos HW, Mitchell M, Setchell BP, Lane M. The effect of paternal diet-induced obesity on sperm function and fertilization in a mouse model. Int J Androl. 2011;34:402–10.

    Article  CAS  PubMed  Google Scholar 

  123. Duale N, Steffensen IL, Andersen J, Brevik A, Brunborg G, et al. Impaired sperm chromatin integrity in obese mice. Andrology. 2014;2:234–43.

    Article  CAS  PubMed  Google Scholar 

  124. Elshal MF, El-Sayed IH, Elsaied MA, El-Masry SA, Kumosani TA. Sperm head defects and disturbances in spermatozoal chromatin and DNA integrities in idiopathic infertile subjects: association with cigarette smoking. Clin Biochem. 2009;42(7):589–94.

    Article  CAS  PubMed  Google Scholar 

  125. Palmer NO, Bakos HW, Owens JA, Setchell BP, Lane M. Diet and exercise in an obese mouse fed a high-fat diet improve metabolic health and reverse perturbed sperm function. Am J Physiol Endocrinol Metab. 2012;302:E768–80.

    Article  CAS  PubMed  Google Scholar 

  126. Martins AD, Majzoub A, Agawal A. Metabolic syndrome and male fertility. World J Mens Health. 2018; https://doi.org/10.5534/wjmh.180055.

  127. Leisegang K, Udodong A, Bouic PJ, Henkel RR. Effect of the metabolic syndrome on male reproductive function: a case-controlled pilot study. Andrologia. 2014;46(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  128. Leisegang K, Henkel R, Agarwal A. Redox regulation of fertility in aging male and the role of antioxidants: a savior or stressor. Curr Pharm Des. 2017;23(30):4438–50.

    Article  CAS  PubMed  Google Scholar 

  129. Marchiani S, Vignozzi L, Filippi S, Gurrieri B, Comeglio P, Morelli A, Danza G, Bartolucci G, Maggi M, Baldi E. Metabolic syndrome-associated sperm alterations in an experimental rabbit model: relation with metabolic profile, testis and epididymis gene expression and effect of tamoxifen treatment. Mol Cell Endocrinol. 2014;401C:12–24.

    Google Scholar 

  130. Mallidis C, Czerwiec A, Filippi S, O’Neill J, Maggi M, Mc Clure N. Spermatogenic and sperm quality differences in an experimental model of metabolic syndrome and hypogonadal hypogonadism. Reproduction. 2011;142(1):63–71.

    Article  CAS  PubMed  Google Scholar 

  131. Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T, Murphy SK. Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study. Clin Epigenetics. 2016;8:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Ornellas F, Carapeto PV, Mandarim-de-Lacerda CA, Aguila MB. Obese fathers lead to an altered metabolism and obesity in their children in adulthood: review of experimental and human studies. J Pediatr. 2017;93(6):551–9.

    Article  Google Scholar 

  133. Setayesh T, Nersesyan A, Mišík M, Ferk F, Langie S, Andrade VM, Haslberger A, Knasmüller S. Impact of obesity and overweight on DNA stability: few facts and many hypotheses. Mutat Res. 2018;777:64–91.

    Article  CAS  Google Scholar 

  134. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med. 1998;15(7):539–53.

    Article  CAS  PubMed  Google Scholar 

  135. La Vignera S, Condorelli RA, Di Mauro M, Lo Presti D, Mongioì LM, Russo G, Calogero AE. Reproductive function in male patients with type 1 diabetes mellitus. Andrology. 2015;3(6):1082–7.

    Article  CAS  PubMed  Google Scholar 

  136. Lascar N, Brown J, Pattison H, Barnett AH, Bailey CJ, Bellary S. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 2018;6(1):69–80.

    Article  PubMed  Google Scholar 

  137. Ding GL, Liu Y, Liu ME, Pan JX, Guo MX, Sheng JZ, Huang HF. The effects of diabetes on male fertility and epigenetic regulation during spermatogenesis. Asian J Androl. 2015;17(6):948–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Condorelli RA, La Vignera S, Mongioì LM, Alamo A, Calogero AE. Diabetes mellitus and infertility: different pathophysiological effects in type 1 and type 2 on sperm function. Front Endocrinol (Lausanne). 2018;9:268.

    Article  Google Scholar 

  139. La Vignera S, Condorelli R, Vicari E, D’Agata R, Calogero AE. Diabetes mellitus and sperm parameters. J Androl. 2012;33(2):145–53.

    Article  CAS  PubMed  Google Scholar 

  140. Agbaje I, Rogers D, Mc Vicar C, Mc Clure N, Atkinson A, Mallidis C, et al. Insulin depend ant diabetes mellitus: implications for male reproductive function. Hum Reprod. 2007;22:1871–7.

    Article  CAS  PubMed  Google Scholar 

  141. Talebi AR, Mangoli E, Nahangi H, Anvari M, Pourentezari M, Halvaei I. Vitamin C attenuates detrimental effects of diabetes mellitus on sperm parameters, chromatin quality and rate of apoptosis in mice. Eur J Obstet Gynecol Reprod Biol. 2014;181:32–6.

    Article  CAS  PubMed  Google Scholar 

  142. Pfeifer S, Fritz M, Goldberg J, Mc Clure RD, Thomas M, Widra E, Schattman G, Licht M, Collins J, Cedars M, Racowsky C, Davis O, Barnhart K, Gracia C, Catherino W, Rebar R, La Barbera A, Practice Committee of the American Society for Reproductive Medicine. Smoking and infertility: a committee opinion. Fertil Steril. 2012;98(6):1400–6.

    Article  Google Scholar 

  143. Sansone A, Di Dato C, de Angelis C, Menafra D, Pozza C, Pivonello R, Isidori A, Gianfrilli D. Smoke, alcohol and drug addiction and male fertility. Reprod Biol Endocrinol. 2018;16(1):3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ramlau-Hansen CH, Thulstrup AM, Aggerholm AS, Jensen MS, Toft G, Bonde JP. Is smoking a risk factor for decreased semen quality? A cross-sectional analysis. Hum Reprod. 2007;22(1):188–96.

    Article  CAS  PubMed  Google Scholar 

  145. Dai JB, Wang ZX, Qiao ZD. The hazardous effects of tobacco smoking on male fertility. Asian J Androl. 2015;17(6):954–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Sharma R, Harlev A, Agarwal A, Esteves SC. Cigarette smoking and semen quality: a new meta-analysis examining the effect of the 2010 World Health Organization Laboratory methods for the examination of human semen. Eur Urol. 2016;70(4):635–45.

    Article  PubMed  Google Scholar 

  147. Harlev A, Agarwal A, Gunes SO, Shetty A, du Plessis SS. Smoking and male infertility: an evidence-based review. World J Mens Health. 2015;33(3):143–60.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Aboulmaouahib S, Madkour A, Kaarouch I, Sefrioui O, Saadani B, Copin H, Benkhalifa M, Louanjli N, Cadi R. Impact of alcohol and cigarette smoking consumption in male fertility potential: looks at lipid peroxidation, enzymatic antioxidant activities and sperm DNA damage. Andrologia. 2018;50(3):e12926. https://doi.org/10.1111/and.12926.

  149. Esakky P, Hansen DA, Drury AM, Felder P, Cusumano A, Moley KH. Paternal exposure to cigarette smoke condensate leads to reproductive sequelae and developmental abnormalities in the offspring of mice. Reprod Toxicol. 2016;65:283–94.

    Article  CAS  PubMed  Google Scholar 

  150. La Maestra S, De Flora S, Micale RT. Effect of cigarette smoke on DNA damage, oxidative stress, and morphological alterations in mouse testis and spermatozoa. Int J Hyg Environ Health. 2015;218(1):117–22.

    Article  CAS  PubMed  Google Scholar 

  151. Cui X, Jing X, Wu X, Wang Z, Li Q. Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep. 2016;14(1):753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Calogero A, Polosa R, Perdichizzi A, Guarino F, La Vignera S, Scarfia A, Fratantonio E, Condorelli R, Bonanno O, Barone N, et al. Cigarette smoke extract immobilizes human spermatozoa and induces sperm apoptosis. Reprod Bio Med Online. 2009;19(4):564–71.

    Article  Google Scholar 

  153. Abdul-Ghani R, Qazzaz M, Dabdoub N, Muhammad R, Abdul-Ghani AS. Studies on cigarette smoke induced oxidative DNA damage and reduced spermatogenesis in rats. J Environ Biol. 2014;35(5):943–7.

    PubMed  Google Scholar 

  154. Pajarinen JT, Karhunen PJ. Spermatogenic arrest and ‘Sertoli cell-only’ syndrome – common alcohol-induced disorders of the human testis. Int J Androl. 1994;17(6):292–9.

    Article  CAS  PubMed  Google Scholar 

  155. Muthusami KR, Chinnaswamy P. Effect of chronic alcoholism on male fertility hormones and semen quality. Fertil Steril. 2005;84(4):919–24.

    Article  CAS  PubMed  Google Scholar 

  156. Li Y, Lin H, Li Y, Cao J. Association between socio-psycho-behavioral factors and male semen quality: systematic review and meta-analyses. Fertil Steril. 2011;95(1):116–23.

    Article  PubMed  Google Scholar 

  157. Youssry M, Ozmen B, Orief Y, Zohni K, Al-Hasani S. Human sperm DNA damage in the context of assisted reproductive techniques. Iran J Reprod Med. 2007;5:137–50.

    CAS  Google Scholar 

  158. Close CE, Roberts PL, Berger RE. Cigarettes, alcohol and marijuana are related to pyospermia in infertile men. J Urol. 1990;144(4):900–3.

    Article  CAS  PubMed  Google Scholar 

  159. Hansen ML, Thulstrup AM, Bonde JP, Olsen J, Hakonsen LB, Ramlau-Hansen CH. Does last week’s alcohol intake affect semen quality or reproductive hormones? A cross-sectional study among healthy young Danish men. Reprod Toxicol. 2012;34(3):457–62.

    Article  CAS  PubMed  Google Scholar 

  160. Karmon AE, Toth TL, Chiu YH, Gaskins AJ, Tanrikut C, Wright DL, Hauser R, Chavarro JE, Earth Study Team. Male caffeine and alcohol intake in relation to semen parameters and in vitro fertilization outcomes among fertility patients. Andrology. 2017;5(2):354–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Jensen TK, Swan S, Jørgensen N, Toppari J, Redmon B, Punab M, Drobnis EZ, Haugen TB, Zilaitiene B, Sparks AE, Irvine DS, Wang C, Jouannet P, Brazil C, Paasch U, Salzbrunn A, Skakkebæk NE, Andersson AM. Alcohol and male reproductive health: a cross-sectional study of 8344 healthy men from Europe and the USA. Hum Reprod. 2014;29(8):1801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Jensen TK, Gottschau M, Madsen JO, Andersson AM, Lassen TH, Skakkebæk NE, Swan SH, Priskorn L, Juul A, Jørgensen N. Habitual alcohol consumption associated with reduced semen quality and changes in reproductive hormones; a cross-sectional study among 1221 young Danish men. BMJ Open. 2014;4(9):e005462.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Hassan MA, Killick SR. Negative lifestyle is associated with a significant reduction in fecundity. Fertil Steril. 2004;81(2):384–92.

    Article  PubMed  Google Scholar 

  164. Jana K, Jana N, De DK, Guha SK. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion. Mol Reprod Dev. 2010;77(9):820–33.

    Article  CAS  PubMed  Google Scholar 

  165. Talebi AR, Sarcheshmeh AA, Khalili MA, Tabibnejad N. Effects of ethanol consumption on chromatin condensation and DNA integrity of epididymal spermatozoa in rat. Alcohol. 2011;45(4):403–9.

    Article  CAS  PubMed  Google Scholar 

  166. Gaspari L, Chang SS, Santella RM, Garte S, Pedotti P, Taioli E. Polycyclic aromatic hydrocarbon-DNA adducts in human sperm as a marker of DNA damage and infertility. Mutat Res. 2003;535(2):155–60.

    Article  CAS  PubMed  Google Scholar 

  167. Loft S, Kold-Jensen T, Hjollund NH, Giwercman A, Gyllemborg J, Ernst E, Olsen J, Scheike T, Poulsen HE, Bonde JP, Oxidative DNA. Damage in human sperm influences time to pregnancy. Hum Reprod. 2003;18(6):1265–72.

    Article  CAS  PubMed  Google Scholar 

  168. Horak S, Polanska J, Widlak P. Bulky DNA adducts in human sperm: relationship with fertility, semen quality, smoking, and environmental factors. Mutat Res. 2003;537(1):53–65.

    Article  CAS  PubMed  Google Scholar 

  169. Wiseman H, Halliwell B. Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J. 1996;313(1):17–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Chastain LG, Sarkar DK. Alcohol effects on the epigenome in the germline: role in the inheritance of alcohol-related pathology. Alcohol. 2017;60:53–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Chang RC, Skiles WM, Chronister SS, Wang H, Sutton GI, Bedi YS, Snyder M, Long CR, Golding MC. DNA methylation-independent growth restriction and altered developmental programming in a mouse model of preconception male alcohol exposure. Epigenetics. 2017;12(10):841–53.

    Article  PubMed  PubMed Central  Google Scholar 

  172. O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B. Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod. 2008;23(5):1044–52.

    Article  CAS  PubMed  Google Scholar 

  173. Maselli J, Hales BF, Chan P, Robaire B. Exposure to bleomycin, etoposide, and cis-platinum alters rat sperm chromatin integrity and sperm head protein profile. Biol Reprod. 2012;86:166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. O’Flaherty CM, Chan PT, Hales BF, Robaire B. Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl. 2012;33(4):629–36.

    Article  PubMed  Google Scholar 

  175. Bujan L, Walschaerts M, Brugnon F, Daudin M, Berthaut I, Auger J, Saias J, Szerman E, Moinard N, Rives N, Hennebicq S. Impact of lymphoma treatments on spermatogenesis and sperm deoxyribonucleic acid: a multicenter prospective study from the CECOS network. Fertil Steril. 2014;102(3):667–674.e3.

    Article  CAS  PubMed  Google Scholar 

  176. Kobayashi H, Larson K, Sharma RK, Nelson DR, Evenson DP, Toma H, Thomas AJ, Agarwal A. DNA damage in patients with untreated cancer as measured by the sperm chromatin structure assay. Fertil Steril. 2001;75(3):469–75.

    Article  CAS  PubMed  Google Scholar 

  177. Paoli D, Pallotti F, Lenzi A, Lombardo F. Fatherhood and sperm DNA damage in testicular Cancer patients. Front Endocrinol (Lausanne). 2018;9:506.

    Article  Google Scholar 

  178. Rogers MJ, Walsh TJ. Male infertility and risk of Cancer. Semin Reprod Med. 2017;35(3):298–303.

    Article  PubMed  Google Scholar 

  179. O’Flaherty C, Hales BF, Chan P, Robaire B. Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;94(4):1374–9.

    Article  CAS  PubMed  Google Scholar 

  180. Paoli D, Gallo M, Rizzo F, Spanò M, Leter G, Lombardo F, et al. Testicular cancer and sperm DNA damage: short-and long-term effects of antineoplastic treatment. Andrology. 2015;3:122–8.

    Article  CAS  PubMed  Google Scholar 

  181. Shnorhavorian M, Schwartz SM, Stansfeld B, Sadler-Riggleman I, Beck D, Skinner MK. Differential DNA methylation regions in adult human sperm following adolescent chemotherapy: potential for epigenetic inheritance. PLoS One. 2017;12(2):e0170085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Vakalopoulos I, Dimou P, Anagnostou I, Zeginiadou T. Impact of cancer and cancer treatment on male fertility. Hormones (Athens). 2015;14(4):579–89.

    Google Scholar 

  183. Lafuente R, García-Blàquez N, Jacquemin B, Checa MA. Outdoor air pollution and sperm quality. Fertil Steril. 2016;106(4):880–96.

    Article  CAS  PubMed  Google Scholar 

  184. Boggia B, Carbone U, Farinaro E, Zarrilli S, Lombardi G, Colao A, De Rosa N, De Rosa M. Effects of working posture and exposure to traffic pollutants on sperm quality. J Endocrinol Investig. 2009;32:430–4.

    Article  CAS  Google Scholar 

  185. Rubes J, Selevan SG, Evenson DP, Zudova D, Vozdova M, Zudova Z, et al. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality. Hum Reprod. 2005;20:2776–83.

    Article  CAS  PubMed  Google Scholar 

  186. Selevan SG, Borkovec L, Slott VL, Zudova Z, Rubes J, Evenson DP, et al. Semen quality and reproductive health of young Czech men exposed to seasonal air pollution. Environ Health Perspect. 2000;108:887–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Calogero AE, La Vignera S, Condorelli RA, Perdichizzi A, Valenti D, Asero P, et al. Environmental car exhaust pollution damages human sperm chromatin and DNA. J Endocrinol Investig. 2011;34:139–43.

    Article  Google Scholar 

  188. De Rosa M, Zarrilli S, Paesano L, Carbone U, Boggia B, Petretta M, et al. Traffic pollutants affect fertility in men. Hum Reprod. 2003;18:1055–61.

    Article  CAS  PubMed  Google Scholar 

  189. Hansen C, Luben T, Sacks J, Olshan A, Jeffay S, Strader L, et al. The effect of ambient air pollution on sperm quality. Environ Health Perspect. 2009;118:203–9.

    Article  CAS  PubMed Central  Google Scholar 

  190. Radwan M, Jurewicz J, Polanska K, Sobala W, Radwan P, Bochenek M, et al. Exposure to ambient air pollution-does it affect semen quality and the level of reproductive hormones? Ann Hum Biol. 2016;43:50–6.

    Article  PubMed  Google Scholar 

  191. Xue W, Warshawsky D. Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol. 2005;206:73–93.

    Article  CAS  PubMed  Google Scholar 

  192. Ji G, Gu A, Zhou Y, Shi X, Xia Y, Long Y, et al. Interactions between exposure to environmental polycyclic aromatic hydrocarbons and DNA repair gene polymorphisms on bulky DNA adducts in human sperm. PLoS One. 2010;5:pii: e13145.

    Article  CAS  Google Scholar 

  193. Semet M, Paci M, Saïas-Magnan J, Metzler-Guillemain C, Boissier R, Lejeune H, Perrin J. The impact of drugs on male fertility: a review. Andrology. 2017;5(4):640–63.

    Article  CAS  PubMed  Google Scholar 

  194. Koyuncu H, Serefoglu E, Yencilek E, Atalay H, Akbas N, Sarıca K. Escitalopram treatment for premature ejaculation has a negative effect on semen parameters. Int J Impotence Res. 2011;23:257–61.

    Article  CAS  Google Scholar 

  195. Khin NA, Kronstein PD, Yang P, Ishida E, Hung HJ, Mathis MV, et al. Regulatory and scientific issues in studies to evaluate sexual dysfunction in antidepressant drug trials. J Clin Psychiatry. 2015;76:1060–3.

    Article  PubMed  Google Scholar 

  196. Khazaie H, Rezaie L, Payam NR, Najafi F. Antidepressant-induced sexual dysfunction during treatment with fluoxetine, sertraline and trazodone; a randomized controlled trial. Gen Hosp Psychiatry. 2015;37:40–5.

    Article  PubMed  Google Scholar 

  197. Safarinejad MR. Sperm DNA damage and semen quality impairment after treatment with selective serotonin reuptake inhibitors detected using semen analysis and sperm chromatin structure assay. J Urol. 2008;180:2124–8.

    Article  PubMed  Google Scholar 

  198. Erdemir F, Atilgan D, Firat F, Markoc F, Parlaktas BS, Sogut E. The effect of sertraline, paroxetine, fluoxetine and escitalopram on testicular tissue and oxidative stress parameters in rats. Int Braz J Urol. 2014;40:100–8.

    Article  PubMed  Google Scholar 

  199. Song B-J, Moon K-H, Upreti VV, Eddington ND, Lee IJ. Mechanisms of MDMA (ecstasy)-induced oxidative stress, mitochondrial dysfunction, and organ damage. Curr Pharm Biotechnol. 2010;11:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Höhn A, Weber D, Jung T, Ott C, Hugo M, Kochlik B, Kehm R, König J, Grune T, Castro JP. Happily (n)ever after: aging in the context of oxidative stress, proteostasis loss and cellular senescence. Redox Biol. 2017;11:482–501.

    Article  CAS  PubMed  Google Scholar 

  201. Selvaratnam J, Robaire B. Effects of ageing and oxidative stress on spermatozoa of superoxide dimutase 1- and catalase-null mice. Biol Reprod. 2016;95(3):60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sies H. Oxidative stress: a concept in redox biology and medicine. Redox Biol. 2015;4:180–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Corona G, Lee DM, Forti G, O’Connor DB, Maggi M, O’Neill TW, Pendleton N, Bartfai G, Boonen S, Casanueva FF, Finn JD, Giwercman A, Han TS, Huhtaniemi IT, Kula K, Lean ME, Punab M, Silman AJ, Vanderschueren D, Wu FC, EMAS Study Group. Age-related changes in general and sexual health in middle-aged and older men: results from the European Male Ageing Study (EMAS). J Sex Med. 2010;7:1362–80.

    Article  PubMed  Google Scholar 

  204. Sharma R, Agarwal A, Rohra VK, Assidi M, Abu-Elmagd M, Turki RF. Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring. Reprod Biol Endocrinol. 2015;19:13–35.

    Google Scholar 

  205. Selvaratnam J, Paul C, Robaire B. Male rat germ cells display age-dependent and cell-specific susceptibility in response to oxidative stress challenges. Biol Reprod. 2015;93(3):72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs E, et al. Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci. 2006;103:9601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Aitken RJ, Curry BJ. Redox regulation of human sperm function: from the physiological control of sperm capacitation to the etiology of infertility and DNA damage in the germ line. Antioxid Redox Signal. 2011;14(3):36781.

    Article  CAS  Google Scholar 

  208. Maneesh M, Jayalekshmi H. Role of reactive oxygen species and antioxidants on pathophysiology of male reproduction. Indian J Clin Biochem. 2006;21(2):80–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Yatsenko AN, Turek PJ. Reproductive genetics and the aging male. J Assist Reprod Genet. 2018;35(6):933–41.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Herati AS, Zhelyazkova BH, Butler PR, Lamb DJ. Age-related alterations in the genetics and genomics of the male germ line. Fertil Steril. 2017;107(2):319–23.

    Article  PubMed  Google Scholar 

  211. Jenkins TG, Aston KI, Carrell DT. Sperm epigenetics and aging. Transl Androl Urol. 2018;7(Suppl 3):S328–35.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Jenkins TG, Aston KI, Pflueger C, Cairns BR, Carrell DT. Age-associated sperm DNA methylation alterations: possible implications in offspring disease susceptibility. PLoS Genet. 2014;10(7):e1004458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kimura R, Yoshizaki K, Osumi N. Risk of neurodevelopmental disease by paternal aging: a possible influence of epigenetic alteration in sperm. Adv Exp Med Biol. 2018;1012:75–81.

    Article  CAS  PubMed  Google Scholar 

  214. Conti SL, Eisenberg ML. Paternal aging and increased risk of congenital disease, psychiatric disorders, and cancer. Asian J Androl. 2016;18(3):420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Milekic MH, Xin Y, O’Donnell A, Kumar KK, Bradley-Moore M, Malaspina D, Moore H, Brunner D, Ge Y, Edwards J, Paul S, Haghighi FG, Gingrich JA. Age-related sperm DNA methylation changes are transmitted to offspring and associated with abnormal behavior and dysregulated gene expression. Mol Psychiatry. 2015;20(8):995–1001.

    Article  CAS  PubMed  Google Scholar 

  216. Avellino G, Theva D, Oates RD. Common urologic diseases in older men and their treatment: how they impact fertility. Fertil Steril. 2017;107(2):305–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Henkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Henkel, R., Leisegang, K. (2020). Origins of Sperm DNA Damage. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics