Skip to main content

Hierarchical Adversarial Connectomic Domain Alignment for Target Brain Graph Prediction and Classification from a Source Graph

  • Conference paper
  • First Online:
Predictive Intelligence in Medicine (PRIME 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11843))

Included in the following conference series:

Abstract

Recently, deep learning methods have been widely used for medical data synthesis. However, existing deep learning frameworks are mainly designed to predict Euclidian structured data (i.e., image), which causes them to fail when handling geometric data (e.g., brain graphs). Besides, these do not naturally account for domain fracture between training source and target data distributions and generally ignore any hierarchical structure that might be present in the data, which causes a flat domain alignment. To address these limitations, we unprecedentedly propose a Hierarchical Graph Adversarial Domain Alignment (HADA) framework for predicting a target brain graph from a source brain graph. We first propose to align the source domain to the target domain by learning their successive embeddings using training samples. In this way, we are optimally learning a hierarchical alignment of both domains as we are learning a graph embedding using the previously aligned source-to-target embedding. To predict the target brain graph of a testing subject, we learn a source embedding using training and testing samples. Second, we learn a connectomic manifold for each of the resulting embeddings (i.e., the hierarchical embedding and the source embedding). Next, we select the nearest neighbors to the testing subject in the source manifold in order to average their corresponding target graphs. Finally, using the source and predicted target graphs by our HADA method, we train a random forest classifier to distinguish between disordered and healthy subjects. Our HADA framework outperformed comparison methods in predicting target brain graph and yields the best classification accuracy in comparison with using only the source graphs.

This work was supported by BASIRA Talented Minority Scholarship for research students in low research & development countries http://basira-lab.com/prime-miccai19/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://fcon_1000.projects.nitrc.org/indi/abide/.

References

  1. Li, R., et al.: Deep learning based imaging data completion for improved brain disease diagnosis. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 305–312. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_39

    Chapter  Google Scholar 

  2. Ben-Cohen, A., et al.: Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection. Eng. Appl. Artif. Intell. 78, 186–194 (2019)

    Article  Google Scholar 

  3. Goodfellow, I., et al.: Generative adversarial nets. Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  4. Arslan, S., Ktena, S.I., Glocker, B., Rueckert, D.: Graph saliency maps through spectral convolutional networks: Application to sex classification with brain connectivity. arXiv preprint arXiv:1806.01764 (2018)

  5. Ktena, S.I., et al.: Distance metric learning using graph convolutional networks: application to functional brain networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 469–477. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_54

    Chapter  Google Scholar 

  6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  7. Olut, S., Sahin, Y.H., Demir, U., Unal, G.: Generative adversarial training for MRA image synthesis using multi-contrast MRI. arXiv preprint arXiv:1804.04366 (2018)

  8. Yang, H., et al.: Unpaired brain MR-to-CT synthesis using a structure-constrained CycleGAN. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 174–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_20

    Chapter  Google Scholar 

  9. Soussia, M., Rekik, I.: A review on image-and network-based brain data analysis techniques for Alzheimer’s disease diagnosis reveals a gap in developing predictive methods for prognosis. arXiv preprint arXiv:1808.01951 (2018)

  10. Pan, S., Hu, R., Long, G., Jiang, J., Yao, L., Zhang, C.: Adversarially regularized graph autoencoder. arXiv preprint arXiv:1802.04407 (2018)

  11. Mahjoub, I., Mahjoub, M.A., Rekik, I.: Brain multiplexes reveal morphological connectional biomarkers fingerprinting late brain dementia states. Sci. Rep. 8, 4103 (2018)

    Article  Google Scholar 

  12. Lisowska, A., Rekik, I.: Alzheimer’s disease neuroimaging initiative and others: joint pairing and structured mapping of convolutional brain morphological multiplexes for early dementia diagnosis. Brain Connect. 9, 22–36 (2018)

    Article  Google Scholar 

  13. Raeper, R., Lisowska, A., Rekik, I.: Cooperative correlational and discriminative ensemble classifier learning for early dementia diagnosis using morphological brain multiplexes. IEEE Access 6, 43830–43839 (2018)

    Article  Google Scholar 

  14. Soussia, M., Rekik, I.:Unsupervised manifold learning using high-order morphological brain networks derived from T1-w MRI for autism diagnosis. Front. Neuroinf. 12 (2018)

    Google Scholar 

  15. Wang, B., Ramazzotti, D., De Sano, L., Zhu, J., Pierson, E., Batzoglou, S.: SIMLR: a tool for large-scale single-cell analysis by multi-kernel learning. bioRxiv p. 118901 (2017)

    Google Scholar 

  16. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  17. Fischl, B.: Freesurfer. Neuroimage 62, 774–781 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Islem Rekik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bessadok, A., Mahjoub, M.A., Rekik, I. (2019). Hierarchical Adversarial Connectomic Domain Alignment for Target Brain Graph Prediction and Classification from a Source Graph. In: Rekik, I., Adeli, E., Park, S. (eds) Predictive Intelligence in Medicine. PRIME 2019. Lecture Notes in Computer Science(), vol 11843. Springer, Cham. https://doi.org/10.1007/978-3-030-32281-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32281-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32280-9

  • Online ISBN: 978-3-030-32281-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics