Skip to main content

Optimizing Clearance of Bézier Spline Trajectories for Minimally-Invasive Surgery

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11768))

Abstract

Preoperative planning of nonlinear trajectories is a key element in minimally-invasive surgery. Interpolating between start and goal of an intervention while circumnavigating risk structures provides the necessary feasible solutions for such procedure. While recent research shows that Rapidly-exploring Random Trees (RRT) on Bézier Splines efficiently solve this task, access paths computed by this method do not provide optimal clearance to surrounding anatomy. We propose an approach based on sequential convex optimization that rearranges Bézier Splines computed by an RRT-connect, thereby achieving locally optimal clearance to risk structures. Experiments on real CT data of patients demonstrate the applicability of our approach on two scenarios: catheter insertion through the aorta and temporal bone surgery. We compare distances to risk structures along computed trajectories with the state of the art solution and show that our method results in clinically safer paths.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Patil, S., Burgner, J., Webster, R.J., Alterovitz, R.: Needle steering in 3-d via rapid replanning. IEEE Trans. Rob. 30(4), 853–864 (2014)

    Article  Google Scholar 

  2. Fauser, J., Sakas, G., Mukhopadhyay, A.: Planning nonlinear access paths for temporal bone surgery. Int. J. Comput. Assist. Radiol. Surg. 13(5), 637–646 (2018)

    Article  Google Scholar 

  3. Patil, S., Pan, J., Abbeel, P., Goldberg, K.: Planning curvature and torsion constrained ribbons in 3d with application to intracavitary brachytherapy. IEEE Trans. Autom. Sci. Eng. 12(4), 1332–1345 (2015)

    Article  Google Scholar 

  4. Ganet, F., et al.: Development of a smart guide wire using an electrostrictive polymer: option for steerable orientation and force feedback. Sci. Rep. 5, 18593 (2015)

    Article  Google Scholar 

  5. Fichera, L., et al.: Through the eustachian tube and beyond: a new miniature robotic endoscope to see into the middle ear. IEEE Rob. Autom. Lett. 2(3), 1488–1494 (2017)

    Article  Google Scholar 

  6. Torres, R., Kazmitcheff, G., De Seta, D., Ferrary, E., Sterkers, O., Nguyen, Y.: Improvement of the insertion axis for cochlear implantation with a robot-based system. Eur. Arch. Oto-Rhino-Laryngol. 274(2), 715–721 (2017)

    Article  Google Scholar 

  7. Dahroug, B., Tamadazte, B., Weber, S., Tavernier, L., Andreff, N.: Review on otological robotic systems: Toward microrobot-assisted cholesteatoma surgery. IEEE Rev. Biomed. Eng. 11, 125–142 (2018)

    Article  Google Scholar 

  8. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Rob. 31(6), 1261–1280 (2015)

    Article  Google Scholar 

  9. Azizi, A., Tremblay, C., Martel, S.: Trajectory planning for vascular navigation from 3d angiography images and vessel centerline data. In: 2017 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS), pp. 1–6, July 2017

    Google Scholar 

  10. Duindam, V., Alterovitz, R., Sastry, S., Goldberg, K.: Skrew-based motion planning for bevel-tip flexible needles in 3D environments with obstacles. In: IEEE Int. Conference on Robotics and Automation, pp. 2483–2488, May 2008

    Google Scholar 

  11. Duan, Y., Patil, S., Schulman, J., Goldberg, K., Abbeel, P.: Planning locally optimal, curvature-constrained trajectories in 3D using sequential convex optimization. In: 2014 IEEE International Conference on Robotics and Automation, (ICRA), pp. 5889–5895, May 2014

    Google Scholar 

  12. Schulman, J., et al.: Motion planning with sequential convex optimization and convex collision checking. Int. J. Rob. Res. 33(9), 1251–1270 (2014)

    Article  Google Scholar 

  13. Trullo, R., Petitjean, C., Ruan, S., Dubray, B., Nie, D., Shen, D.: Segmentation of organs at risk in thoracic ct images using a sharpmask architecture and conditional random fields. In: 14th IEEE International Symposium on Biomedical Imaging, pp. 1003–1006 (2017)

    Google Scholar 

  14. Yang, K., Sukkarieh, S.: 3D smooth path planning for a uav in cluttered natural environments. In: 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 794–800, September 2008

    Google Scholar 

  15. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  16. Valette, S., Chassery, J.M.: Approximated centroidal voronoi diagrams for uniform polygonal mesh coarsening. Comput. Graph. Forum. 23, 381–390 (2004)

    Article  Google Scholar 

  17. Fauser, J., et al.: Toward an automatic preoperative pipeline for image-guided temporal bone surgery. Int. J. Computer. Assist. Radiol. Surg. (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Fauser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fauser, J., Stenin, I., Kristin, J., Klenzner, T., Schipper, J., Mukhopadhyay, A. (2019). Optimizing Clearance of Bézier Spline Trajectories for Minimally-Invasive Surgery. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11768. Springer, Cham. https://doi.org/10.1007/978-3-030-32254-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32254-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32253-3

  • Online ISBN: 978-3-030-32254-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics