Skip to main content

VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11767)

Abstract

In this work, we propose a deep learning approach for parallel magnetic resonance imaging (MRI) reconstruction, termed a variable splitting network (VS-Net), for an efficient, high-quality reconstruction of undersampled multi-coil MR data. We formulate the generalized parallel compressed sensing reconstruction as an energy minimization problem, for which a variable splitting optimization method is derived. Based on this formulation we propose a novel, end-to-end trainable deep neural network architecture by unrolling the resulting iterative process of such variable splitting scheme. VS-Net is evaluated on complex valued multi-coil knee images for 4-fold and 6-fold acceleration factors. We show that VS-Net outperforms state-of-the-art deep learning reconstruction algorithms, in terms of reconstruction accuracy and perceptual quality. Our code is publicly available at https://github.com/j-duan/VS-Net.

J. Duan and J. Schlemper—Contributed equally.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-32251-9_78
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-32251-9
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Notes

  1. 1.

    https://github.com/VLOGroup/mri-variationalnetwork.

References

  1. Schlemper, J., et al.: A deep cascade of convolutional neural networks for dynamic MR image reconstruction. IEEE Trans. Med. Imag. 37(2), 491–503 (2018)

    CrossRef  Google Scholar 

  2. Yan, Y., et al.: Deep ADMM-Net for compressive sensing MRI. In: NIPS, pp. 10–18 (2016)

    Google Scholar 

  3. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    CrossRef  Google Scholar 

  4. Aggarwal, H.K., et al.: MoDL: model-based deep learning architecture for inverse problems. IEEE Trans. Med. Imag. 38(2), 394–405 (2019)

    CrossRef  Google Scholar 

  5. Han, Y., et al.: k-space deep learning for accelerated MRI. arXiv:1805.03779 (2018)

  6. Akcakaya, M., et al.: Scan-specific robust artificial-neural-networks for k-space interpolation (RAKI) reconstruction: database-free deep learning for fast imaging. Magn. Reson. Med. 81(1), 439–453 (2018)

    CrossRef  Google Scholar 

  7. Jin, K., et al.: Self-supervised deep active accelerated MRI. arXiv:1901.04547 (2019)

  8. Mardani, M., et al.: Deep generative adversarial neural networks for compressive sensing MRI. IEEE Trans. Med. Imag. 38(1), 167–179 (2019)

    CrossRef  Google Scholar 

  9. Tezcan, K., et al.: MR image reconstruction using deep density priors. IEEE Trans. Med. Imag. (2018)

    Google Scholar 

  10. Zhang, P., Wang, F., Xu, W., Li, Y.: Multi-channel generative adversarial network for parallel magnetic resonance image reconstruction in K-space. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 180–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_21

    CrossRef  Google Scholar 

  11. Uecker, M., et al.: ESPIRiT an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Google Scholar 

  12. Lu, W., et al.: Implementation of high-order variational models made easy for image processing. Math. Method Appl. Sci. 39(14), 4208–4233 (2016)

    MathSciNet  CrossRef  Google Scholar 

  13. Lu, W., et al.: Graph-and finite element-based total variation models for the inverse problem in diffuse optical tomography. Biomed. Opt. Express 10(6), 2684–2707 (2019)

    CrossRef  Google Scholar 

  14. Duan, J., et al.: Denoising optical coherence tomography using second order total generalized variation decomposition. Biomed. Signal Process. Control 24, 120–127 (2016)

    CrossRef  Google Scholar 

  15. Liu, R.W., et al.: Undersampled CS image reconstruction using nonconvex nonsmooth mixed constraints. Multimed. Tools Appl. 78(10), 12749–12782 (2019)

    CrossRef  Google Scholar 

  16. Uecker, M., et al.: Software toolbox and programming library for compressed sensing and parallel imaging, Citeseer

    Google Scholar 

  17. Murphy, M., et al.: Fast l1-spirit compressed sensing parallel imaging MRI: Scalable parallel implementation and clinically feasible runtime. IEEE Trans. Med. Imag. 31(6), 1250–1262 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the EPSRC Programme Grant (EP/P001009/1) and the British Heart Foundation (NH/17/1/32725). The TITAN Xp GPU used for this research was kindly donated by the NVIDIA Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Duan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2759 KB)

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Duan, J. et al. (2019). VS-Net: Variable Splitting Network for Accelerated Parallel MRI Reconstruction. In: , et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)