Skip to main content

Placental Flattening via Volumetric Parameterization

Part of the Lecture Notes in Computer Science book series (LNIP,volume 11767)


We present a volumetric mesh-based algorithm for flattening the placenta to a canonical template to enable effective visualization of local anatomy and function. Monitoring placental function in vivo promises to support pregnancy assessment and to improve care outcomes. We aim to alleviate visualization and interpretation challenges presented by the shape of the placenta when it is attached to the curved uterine wall. To do so, we flatten the volumetric mesh that captures placental shape to resemble the well-studied ex vivo shape. We formulate our method as a map from the in vivo shape to a flattened template that minimizes the symmetric Dirichlet energy to control distortion throughout the volume. Local injectivity is enforced via constrained line search during gradient descent. We evaluate the proposed method on 28 placenta shapes extracted from MRI images in a clinical study of placental function. We achieve sub-voxel accuracy in mapping the boundary of the placenta to the template while successfully controlling distortion throughout the volume. We illustrate how the resulting mapping of the placenta enhances visualization of placental anatomy and function. Our implementation is freely available at


  • Placenta
  • Fetal MRI
  • Flattening
  • Injective maps
  • Volumetric mesh parameterization
  • Anatomy visualization

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions


  1. Fang, Q., Boas, D.A.: Tetrahedral mesh generation from volumetric binary and grayscale images. In: 2009 IEEE ISBI, pp. 1142–1145 (2009)

    Google Scholar 

  2. Fischl, B., Sereno, M.I., Dale, A.M.: Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195–207 (1999)

    CrossRef  Google Scholar 

  3. Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Trans. Graph. 26(3), 87–93 (2007)

    CrossRef  Google Scholar 

  4. Leow, A.D., et al.: Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE TMI 26(6), 822–832 (2007)

    Google Scholar 

  5. Luo, J., et al.: In vivo quantification of placental insufficiency by BOLD MRI: a human study. Sci. Rep. 7(1), 3713 (2017)

    CrossRef  Google Scholar 

  6. Miao, H., et al.: Placenta maps: in utero placental health assessment of the human fetus. IEEE TVCG 23(6), 1612–1623 (2017)

    Google Scholar 

  7. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  8. Rabinovich, M., Poranne, R., Panozzo, D., Sorkine-Hornung, O.: Scalable locally injective mappings. ACM Trans. Graph. 36(4) (2017)

    Google Scholar 

  9. Schreiner, J., Asirvatham, A., Praun, E., Hoppe, H.: Inter-surface mapping. ACM Trans. Graph. 23(3), 870–877 (2004)

    CrossRef  Google Scholar 

  10. Smith, J., Schaefer, S.: Bijective parameterization with free boundaries. ACM Trans. Graph. 34(4), 70:1–70:9 (2015)

    Google Scholar 

  11. Sørensen, A., Peters, D., Simonsen, C., Pedersen, M., Stausbøl-Grøn, B., Christiansen, O.B., et al.: Changes in human fetal oxygenation during maternal hyperoxia as estimated by BOLD MRI. Prenat. Diagn. 33, 141–145 (2013)

    CrossRef  Google Scholar 

  12. Timsari, B., Leahy, R.M.: Optimization method for creating semi-isometric flat maps of the cerebral cortex. In: Proceedings of SPIE, Medical Imaging, pp. 698–709 (2000)

    Google Scholar 

  13. Tosun, D., Prince, J.L.: Hemispherical map for the human brain cortex. In: Proceeding of the SPIE, Medical Imaging, pp. 290–301 (2001)

    Google Scholar 

Download references


This work was supported in part by NIH NIBIB NAC P41EB015902, NIH NICHD U01HD087211, NSF IIS-1838071, Air Force FA9550-19-1-0319, Wistron, SIP, AWS, NSF Graduate Research Fellowship, and NSERC Post Graduate Scholarship.

Author information

Authors and Affiliations


Corresponding author

Correspondence to S. Mazdak Abulnaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abulnaga, S.M., Abaci Turk, E., Bessmeltsev, M., Grant, P.E., Solomon, J., Golland, P. (2019). Placental Flattening via Volumetric Parameterization. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)