Skip to main content

Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Neuroimaging datasets keep growing in size to address increasingly complex medical questions. However, even the largest datasets today alone are too small for training complex machine learning models. A potential solution is to increase sample size by pooling scans from several datasets. In this work, we combine 12,207 MRI scans from 15 studies and show that simple pooling is often ill-advised due to introducing various types of biases in the training data. First, we systematically define these biases. Second, we detect bias by experimentally showing that scans can be correctly assigned to their respective dataset with 73.3% accuracy. Finally, we propose to tell causal from confounding factors by quantifying the extent of confounding and causality in a single dataset using causal inference. We achieve this by finding the simplest graphical model in terms of Kolmogorov complexity. As Kolmogorov complexity is not directly computable, we employ the minimum description length to approximate it. We empirically show that our approach is able to estimate plausible causal relationships from real neuroimaging data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://brain-development.org/ixi-dataset/.

References

  1. Alexander, L.M., Escalera, J., et al.: An open resource for transdiagnostic research in pediatric mental health and learning disorders. bioRxiv, p. 149369 (2017)

    Google Scholar 

  2. Buckner, R., et al.: The brain genomics superstruct project. HDN (2012)

    Google Scholar 

  3. Di Martino, A., Yan, C., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  4. Dukart, J., Schroeter, M.L., Mueller, K.: Age correction in dementia-matching to a healthy brain. PLoS ONE 6(7), e22193 (2011)

    Article  Google Scholar 

  5. Ellis, K., Bush, A., Darby, D., et al.: The australian imaging, biomarkers and lifestyle (AIBL) study of aging. Int. Psychogeriatr. 21(04), 672–687 (2009)

    Article  Google Scholar 

  6. Fischl, B., Salat, D.H., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  7. Fortin, J.P., Cullen, N., et al.: Harmonization of cortical thickness measurements across scanners and sites. Neuroimage 167, 104–120 (2018)

    Article  Google Scholar 

  8. Gollub, R.L., et al.: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics 11(3), 367–388 (2013)

    Article  Google Scholar 

  9. Guadalupe, T., Mathias, S.R., Theo, G., et al.: Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging Behav. 11(5), 1497–1514 (2017)

    Article  Google Scholar 

  10. Han, X., Fischl, B.: Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE TMI 26(4), 479–486 (2007)

    Google Scholar 

  11. Jack, C.R., Bernstein, M.A., Fox, N.C., Thompson, P., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  12. Kaltenpoth, D., Vreeken, J.: We are not your real parents: telling causal from confounded by MDL. In: SIAM International Conference on Data Mining (2019)

    Google Scholar 

  13. Kruggel, F., Turner, J., Muftuler, L.T.: Impact of scanner hardware and imaging protocol on image quality and compartment volume precision in the ADNI cohort. Neuroimage 49(3), 2123–2133 (2010)

    Article  Google Scholar 

  14. Kucukelbir, A., Tran, D., et al.: Automatic differentiation variational inference. J. Mach. Learn. Res. 18(1), 430–474 (2017)

    MathSciNet  MATH  Google Scholar 

  15. Linn, K.A., Gaonkar, B., Doshi, J., Davatzikos, C., Shinohara, R.T.: Addressing confounding in predictive models with an application to neuroimaging. Int. J. Biostatistics 12(1), 31–44 (2016)

    Article  MathSciNet  Google Scholar 

  16. Marcus, D.S., Wang, T.H., Parker, J., Csernansky, J.G., Morris, J.C., Buckner, R.L.: Open access series of imaging studies (OASIS): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J. Cognitive Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  17. Marek, K., et al.: The parkinson progression marker initiative (PPMI). Progress Neurobiol. 95(4), 629–635 (2011)

    Article  Google Scholar 

  18. Mayer, A., et al.: Functional imaging of the hemodynamic sensory gating response in schizophrenia. Hum. Brain Mapp. 34(9), 2302–2312 (2013)

    Article  Google Scholar 

  19. Milham, M.P., Fair, D., Mennes, M., Mostofsky, S.H., et al.: The ADHD-200 consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012)

    Google Scholar 

  20. Nooner, K.B., et al.: The NKI-rockland sample: a model for accelerating the pace of discovery science in psychiatry. Front. Neurosci. 6, 152 (2012)

    Article  Google Scholar 

  21. Rao, A., Monteiro, J.M., Mourao-Miranda, J.: Predictive modelling using neuroimaging data in the presence of confounds. NeuroImage 150, 23–49 (2017)

    Article  Google Scholar 

  22. Smith, S.M., Nichols, T.E.: Statistical challenges in “big data” human neuroimaging. Neuron 97(2), 263–268 (2018)

    Article  Google Scholar 

  23. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: Computer Vision and Pattern Recognition (CVPR), pp. 1521–1528 (2011)

    Google Scholar 

  24. Van Essen, D.C., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80, 62–79 (2013)

    Article  Google Scholar 

  25. Wachinger, C., Reuter, M.: Domain adaptation for Alzheimer’s disease diagnostics. Neuroimage 139, 470–479 (2016)

    Article  Google Scholar 

  26. Zuo, X.N., Anderson, J.S., Bellec, P., et al.: An open science resource for establishing reliability and reproducibility in functional connectomics. Sci. Data 1, 140049 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the Bavarian State Ministry of Science and the Arts in the framework of the Centre Digitisation.Bavaria (ZD.B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wachinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wachinger, C., Becker, B.G., Rieckmann, A., Pölsterl, S. (2019). Quantifying Confounding Bias in Neuroimaging Datasets with Causal Inference. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics