Skip to main content

Multiple Landmark Detection Using Multi-agent Reinforcement Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

The detection of anatomical landmarks is a vital step for medical image analysis and applications for diagnosis, interpretation and guidance. Manual annotation of landmarks is a tedious process that requires domain-specific expertise and introduces inter-observer variability. This paper proposes a new detection approach for multiple landmarks based on multi-agent reinforcement learning. Our hypothesis is that the position of all anatomical landmarks is interdependent and non-random within the human anatomy, thus finding one landmark can help to deduce the location of others. Using a Deep Q-Network (DQN) architecture we construct an environment and agent with implicit inter-communication such that we can accommodate K agents acting and learning simultaneously, while they attempt to detect K different landmarks. During training the agents collaborate by sharing their accumulated knowledge for a collective gain. We compare our approach with state-of-the-art architectures and achieve significantly better accuracy by reducing the detection error by \(50\%\), while requiring fewer computational resources and time to train compared to the naïve approach of training K agents separately. Code and visualizations available: https://github.com/thanosvlo/MARL-for-Anatomical-Landmark-Detection

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alansary, A., et al.: Automatic view planning with multi-scale deep reinforcement learning agents. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 277–285. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_32

    Chapter  Google Scholar 

  2. Alansary, A., et al.: Evaluating reinforcement learning agents for anatomical landmark detection. Med. Image Anal. 53, 156–164 (2019)

    Article  Google Scholar 

  3. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network, pp. 737–744 (1993)

    Google Scholar 

  4. Foerster, J., Assael, I.A., de Freitas, N., Whiteson, S.: Learning to communicate with deep multi-agent reinforcement learning. In: NIPS, vol. 29, pp. 2137–2145 (2016)

    Google Scholar 

  5. Foerster, J., Chen, R.Y., Al-Shedivat, M., Whiteson, S., Abbeel, P., Mordatch, I.: Learning with opponent-learning awareness. In: Proceedings of 17th International Conference on Autonomous Agents and MultiAgent Systems AAMAS 2018, pp. 122–130 (2018)

    Google Scholar 

  6. Gauriau, R., Cuingnet, R., Lesage, D., Bloch, I.: Multi-organ localization with cascaded global-to-local regression and shape prior. Med. Image Anal. 23(1), 70–83 (2015)

    Article  Google Scholar 

  7. Ghesu, F., Georgescu, B., Zheng, Y., Grbic, S., Maier, A., Hornegger, J., Comaniciu, D.: Multi-scale deep reinforcement learning for real-time 3D-landmark detection in CT scans. IEEE PAMI 41(1), 176–189 (2019)

    Article  Google Scholar 

  8. Ghesu, F.C., Georgescu, B., Mansi, T., Neumann, D., Hornegger, J., Comaniciu, D.: An artificial agent for anatomical landmark detection in medical images. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9902, pp. 229–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46726-9_27

    Chapter  Google Scholar 

  9. Girard, J., Emami, R.: Concurrent Markov decision processes for robot team learning. EAAI 39, 223–234 (2015)

    Google Scholar 

  10. Gupta, J.K., Egorov, M., Kochenderfer, M.: Cooperative multi-agent control using deep reinforcement learning. In: Sukthankar, G., Rodriguez-Aguilar, J.A. (eds.) AAMAS 2017. LNCS (LNAI), vol. 10642, pp. 66–83. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71682-4_5

    Chapter  Google Scholar 

  11. Jaakkola, T., Singh, S.P., Jordan, M.I.: Reinforcement learning algorithm for partially observable Markov decision problems. In: NIPS (1995)

    Google Scholar 

  12. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging 27(4), 685–691 (2008)

    Article  Google Scholar 

  13. Li, Y., et al.: Fast multiple landmark localisation using a patch-based iterative network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 563–571. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_64

    Chapter  Google Scholar 

  14. de Marvao, A., Dawes, T.J., Shi, W., Minas, C., Keenan, N.G., Diamond, T., Durighel, G., Montana, G., Rueckert, D., Cook, S.A., et al.: Population-based studies of myocardial hypertrophy: high resolution cardiovascular magnetic resonance atlases improve statistical power. J. Cardiovasc. Magn. Reson. 16(1), 16 (2014)

    Article  Google Scholar 

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518, 529 (2015)

    Article  Google Scholar 

  16. Oktay, O., et al.: Stratified decision forests for accurate anatomical landmark localization in cardiac images. IEEE Trans. Med. Imaging 36(1), 332–342 (2017)

    Article  Google Scholar 

  17. Rahmatullah, B., Papageorghiou, A.T., Noble, J.A.: Image analysis using machine learning: anatomical landmarks detection in fetal ultrasound images. In: 2012 IEEE 36th Annual Computer Software and Applications Conference, pp. 354–355, July 2012

    Google Scholar 

  18. Rashid, T., Samvelyan, M., de Witt, C.S., Farquhar, G., Foerster, J.N., Whiteson, S.: QMIX: monotonic value function factorisation for deep multi-agent reinforcement learning. CoRR abs/1803.11485 (2018)

    Google Scholar 

  19. Zheng, Y., Liu, D., Georgescu, B., Nguyen, H., Comaniciu, D.: 3D deep learning for efficient and robust landmark detection in volumetric data. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 565–572. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_69

    Chapter  Google Scholar 

Download references

Acknowledgements

Wellcome Trust IEH Award [102431], EPSRC EP/ S013687/ 1, NVIDIA for their GPU donations. Brain MRI: adni.loni.usc.edu, US data: access only with informed consent, subject to approval and formal Data Sharing Agreement. Caridac data: digital-heart.org.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Vlontzos .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (mp4 6121 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vlontzos, A., Alansary, A., Kamnitsas, K., Rueckert, D., Kainz, B. (2019). Multiple Landmark Detection Using Multi-agent Reinforcement Learning. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11767. Springer, Cham. https://doi.org/10.1007/978-3-030-32251-9_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32251-9_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32250-2

  • Online ISBN: 978-3-030-32251-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics