Skip to main content

Automated Parcellation of the Cortex Using Structural Connectome Harmonics

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Abstract

Meaningful division of the human cortex into distinct regions is a longstanding goal in neuroscience. Many of the most widely cited parcellations utilize anatomical priors or depend on functional magnetic resonance imaging (MRI) data while there exists a relative dearth of parcellations that use only structural data based on diffusion MRI. In light of this, and the fact that structural connectivity represents the underlying substrates of functional connectivity, we employ a novel high-resolution, vertex-level graph model of the whole-brain structural connectome and show that the harmonic modes of this graph can be used to achieve parcellations that qualitatively agree with the widely accepted atlases in the literature. Further, we detail a multi-layer formulation of the structural connectome graph and demonstrate that hierarchical clustering of its harmonic modes yields subject-specific parcellations at varying resolutions with ensured and tunable group-level correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://mrtrix.readthedocs.io/en/latest/index.html.

References

  1. Tittgemeyer, M., Rigoux, L., Knösche, T.R.: Cortical Parcellation Based on Structural Connectivity: A Case for Generative Models (2018)

    Google Scholar 

  2. Atasoy, S., Donnelly, I., Pearson, J.: Human brain networks function in connectome-specific harmonic waves. Nat. Commun. 7 (2016). Article number 10340

    Google Scholar 

  3. Lévy, B.: Laplace-beltrami eigenfunctions towards an algorithm that “understands” geometry. In: Proceedings - IEEE International Conference on Shape Modeling and Applications 2006, SMI 2006 (2006)

    Google Scholar 

  4. Lefèvre, J., et al.: SPANOL (SPectral ANalysis of Lobes): a spectral clustering framework for individual and group parcellation of cortical surfaces in lobes. Front. Neurosci. 12, 354 (2018)

    Article  Google Scholar 

  5. Glasser, M.F., et al.: The minimal preprocessing pipelines for the human connectome project. NeuroImage 80, 105–124 (2013)

    Article  Google Scholar 

  6. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K.: The WU-Minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

  7. Tournier, J.D., Calamante, F., Connelly, A.: MRtrix: diffusion tractography in crossing fiber regions. Int. J. Imaging Syst. Technol. 22, 53–66 (2012)

    Article  Google Scholar 

  8. Singer, A.: From Graph to Manifold Laplacian: The Convergence Rate (2006)

    Google Scholar 

  9. Varoquaux, G., Buitinck, L., Grisel, O., Louppe, G., Mueller, A., Pedregosa, F.: Scikit-learn: machine learning without learning the machinery. GetMobile Mob. Comput. Commun. 19, 29–33 (2017)

    Article  Google Scholar 

  10. Knösche, T.R., Tittgemeyer, M.: The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex. Front. Syst. Neurosci. 5, 58 (2011)

    Article  Google Scholar 

  11. Zhang, H., Stanley, N., Mucha, P.J., Yin, W., Lin, W., Shen, D.: Multi-layer large-scale functional connectome reveals infant brain developmental patterns. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 136–144. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_16

    Chapter  Google Scholar 

  12. Buckner, R.L., Krienen, F.M., Castellanos, A., Diaz, J.C., Yeo, B.T.T.: The organization of the human cerebellum estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 2322–2345 (2011)

    Article  Google Scholar 

  13. Power, J.D., et al.: Functional network organization of the human brain. Neuron 72, 665–678 (2011)

    Article  Google Scholar 

  14. Garcia, K.E., et al.: Dynamic patterns of cortical expansion during folding of the preterm human brain. Proc. Natl. Acad. Sci. 115, 3156–3161 (2018)

    Article  Google Scholar 

  15. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536, 171–178 (2016)

    Article  Google Scholar 

  16. Wig, G.S., Laumann, T.O., Petersen, S.E.: An Approach for Parcellating Human Cortical Areas Using Resting-state Correlations (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by NIH grants (NS093842, EB022880, MH108914, AG042599, and AG041721).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Han Zhang or Pew-Thian Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taylor IV, H.P., Wu, Z., Wu, Y., Shen, D., Zhang, H., Yap, PT. (2019). Automated Parcellation of the Cortex Using Structural Connectome Harmonics. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_53

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics