Skip to main content

SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11766))

Abstract

Deep learning has largely reduced the need for manual feature selection in image segmentation. Nevertheless, network architecture optimization and hyperparameter tuning are mostly manual and time consuming. Although there are increasing research efforts on network architecture search in computer vision, most works concentrate on image classification but not segmentation, and there are very limited efforts on medical image segmentation especially in 3D. To remedy this, here we propose a framework, SegNAS3D, for network architecture search of 3D image segmentation. In this framework, a network architecture comprises interconnected building blocks that consist of operations such as convolution and skip connection. By representing the block structure as a learnable directed acyclic graph, hyperparameters such as the number of feature channels and the option of using deep supervision can be learned together through derivative-free global optimization. Experiments on 43 3D brain magnetic resonance images with 19 structures achieved an average Dice coefficient of 82%. Each architecture search required less than three days on three GPUs and produced architectures that were much smaller than the state-of-the-art manually created architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  2. Conn, A.R., Scheinberg, K., Vicente, L.N.: Introduction to Derivative-Free Optimization. Siam (2009)

    Google Scholar 

  3. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  4. Kaelo, P., Ali, M.M.: Some variants of the controlled random search algorithm for global optimization. J. Optim. Theor. Appl. 130(2), 253–264 (2006)

    Article  MathSciNet  Google Scholar 

  5. Lee, C.Y., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: International Conference on Artificial Intelligence and Statistics, pp. 562–570 (2015)

    Google Scholar 

  6. Liu, H., Simonyan, K., Yang, Y.: DARTS: differentiable architecture search. arXiv:1806.09055 [cs.LG] (2018)

  7. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: IEEE International Conference on 3D Vision, pp. 565–571 (2016)

    Google Scholar 

  8. Mortazi, A., Bagci, U.: Automatically designing CNN architectures for medical image segmentation. In: Shi, Y., Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 98–106. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00919-9_12

    Chapter  Google Scholar 

  9. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, inception-ResNet and the impact of residual connections on learning. In: AAAI Conference on Artificial Intelligence, pp. 4278–4284 (2017)

    Google Scholar 

  10. Wong, K.C.L., Moradi, M., Tang, H., Syeda-Mahmood, T.: 3D segmentation with exponential logarithmic loss for highly unbalanced object sizes. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 612–619. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_70

    Chapter  Google Scholar 

  11. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv:1511.07122 [cs.CV] (2015)

  12. Zhong, Z., Yan, J., Wu, W., Shao, J., Liu, C.L.: Practical block-wise neural network architecture generation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2423–2432 (2018)

    Google Scholar 

  13. Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. arXiv:1611.01578 [cs.LG] (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken C. L. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wong, K.C.L., Moradi, M. (2019). SegNAS3D: Network Architecture Search with Derivative-Free Global Optimization for 3D Image Segmentation. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11766. Springer, Cham. https://doi.org/10.1007/978-3-030-32248-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32248-9_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32247-2

  • Online ISBN: 978-3-030-32248-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics