Mufson, E.J., Mahady, L., Waters, D., et al.: Hippocampal plasticity during the progression of Alzheimer’s Disease. Neuroscience 309, 51–67 (2015)
CrossRef
Google Scholar
Flores, R., Joie, R., Chetelat, G.: Structural imaging of the hippocampal subfields in healthy aging and Alzheimer’s disease. Neuroscience 309, 29–50 (2015)
CrossRef
Google Scholar
Fischl, B., Salat, D.H., et al.: Whole brain segmentation: automated labelling of neuroanatomical structures in the human brain. Neuron 33, 341–355 (2002)
CrossRef
Google Scholar
Patenaude, B., Smith, S.M., et al.: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56(3), 907–922 (2011)
CrossRef
Google Scholar
Roy, A., Conjeti, S., Navab, N., Wachinger, C.: QuickNAT: segmenting MRI neuroanatomy in 20 seconds. NeuroImage 186, 713–727 (2019)
CrossRef
Google Scholar
Wachinger, C., Reuter, M., Klein, T.: DeepNAT: deep convolutional neural network for segmenting neuroanatomy. NeuroImage 170, 434–445 (2017)
CrossRef
Google Scholar
Balakrishnan, G., Zhao, A., Sabuncu, M., Guttag, J., Dalca, A.: VoxelMorph: a learning framework for deformable medical image registration. arXiv (2018)
Google Scholar
Jaderberg, M., Simonyan, K., Zisserman, A., Kuvukcuoglu, K.: Spatial transformer networks. In: Neural Information Processing Systems (2015)
Google Scholar
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
CrossRef
Google Scholar
Boccardi, M., Bocchetta, M., Morency, F.C., et al.: Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol. Alzheimer’s Dementia 11(2), 175–183 (2015)
CrossRef
Google Scholar