Advertisement

On the Applicability of Registration Uncertainty

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11765)

Abstract

Estimating the uncertainty in (probabilistic) image registration enables, e.g., surgeons to assess the operative risk based on the trustworthiness of the registered image data. If surgeons receive inaccurately calculated registration uncertainty and misplace unwarranted confidence in the alignment solutions, severe consequences may result. For probabilistic image registration (PIR), the predominant way to quantify the registration uncertainty is using summary statistics of the distribution of transformation parameters. The majority of existing research focuses on trying out different summary statistics as well as means to exploit them. Distinctively, in this paper, we study two rarely examined topics: (1) whether those summary statistics of the transformation distribution most informatively represent the registration uncertainty; (2) Does utilizing the registration uncertainty always be beneficial. We show that there are two types of uncertainties: the transformation uncertainty, \(U_\mathrm {t}\), and label uncertainty \(U_\mathrm {l}\). The conventional way of using \(U_\mathrm {t}\) to quantify \(U_\mathrm {l}\) is inappropriate and can be misleading. By a real data experiment, we also share a potentially critical finding that making use of the registration uncertainty may not always be an improvement.

Keywords

Image registration Registration uncertainty 

Notes

Acknowledgement

MS was supported by the International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study. This work was also supported by NIH grants P41EB015898, P41EB015902 and 5R01NS049251.

References

  1. 1.
    Maintz, J.B.A., Viergever, M.A.: A survey of medical image registration. Med. Image Anal. 2(1), 1–36 (1998)CrossRefGoogle Scholar
  2. 2.
    Sotiras, A., Davatzikos, C.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)CrossRefGoogle Scholar
  3. 3.
    Cobzas, D., Sen, A.: Random walks for deformable image registration. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6892, pp. 557–565. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23629-7_68CrossRefGoogle Scholar
  4. 4.
    Simpson, I.J.A., et al.: Probabilistic inference of regularisation in non-rigid registration. NeuroImage. 59, 2438–2451 (2012)CrossRefGoogle Scholar
  5. 5.
    Janoos, F., Risholm, P., Wells, W.: Bayesian characterization of uncertainty in multi-modal image registration. In: Dawant, B.M., Christensen, G.E., Fitzpatrick, J.M., Rueckert, D. (eds.) WBIR 2012. LNCS, vol. 7359, pp. 50–59. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31340-0_6CrossRefGoogle Scholar
  6. 6.
    Risholm, P., et al.: Bayesian characterization of uncertainty in intra-subject non-rigid registration. Med. Image Anal. 17(5), 538–555 (2013)CrossRefGoogle Scholar
  7. 7.
    Lotfi, T., Tang, L., Andrews, S., Hamarneh, G.: Improving probabilistic image registration via reinforcement learning and uncertainty evaluation. In: Wu, G., Zhang, D., Shen, D., Yan, P., Suzuki, K., Wang, F. (eds.) MLMI 2013. LNCS, vol. 8184, pp. 187–194. Springer, Cham (2013).  https://doi.org/10.1007/978-3-319-02267-3_24CrossRefGoogle Scholar
  8. 8.
    Popuri, K., Cobzas, D., Jägersand, M.: A variational formulation for discrete registration. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8151, pp. 187–194. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-40760-4_24CrossRefGoogle Scholar
  9. 9.
    Zhang, M., Singh, N., Fletcher, P.T.: Bayesian estimation of regularization and atlas building in diffeomorphic image registration. In: Gee, J.C., Joshi, S., Pohl, K.M., Wells, W.M., Zöllei, L. (eds.) IPMI 2013. LNCS, vol. 7917, pp. 37–48. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38868-2_4CrossRefGoogle Scholar
  10. 10.
    Wassermann, D., Toews, M., Niethammer, M., Wells, W.: Probabilistic diffeomorphic registration: representing uncertainty. In: Ourselin, S., Modat, M. (eds.) WBIR 2014. LNCS, vol. 8545, pp. 72–82. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-08554-8_8CrossRefGoogle Scholar
  11. 11.
    Simpson, I.J.A., et al.: Probabilistic non-linear registration with spatially adaptive regularisation. Med. Image Anal. 26(1), 203–216 (2015)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Yang, X., Niethammer, M.: Uncertainty quantification for LDDMM using a low-rank Hessian approximation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9350, pp. 289–296. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-24571-3_35CrossRefGoogle Scholar
  13. 13.
    Heinrich, M.P., et al.: Deformable image registration by combining uncertainty estimates from supervoxel belief propagation. Med. Image Anal. 27, 57–71 (2016)CrossRefGoogle Scholar
  14. 14.
    Folgoc, L.L., et al.: Quantifying registration uncertainty with sparse Bayesian modelling. IEEE Trans. Image Process. 36(2), 607–617 (2017)CrossRefGoogle Scholar
  15. 15.
    Wang, J., Wells, W.M., Golland, P., Zhang, M.: Efficient Laplace approximation for Bayesian registration uncertainty quantification. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 880–888. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_99CrossRefGoogle Scholar
  16. 16.
    Luo, J., et al.: A feature-driven active framework for ultrasound-based brain shift compensation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11073, pp. 30–38. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00937-3_4CrossRefGoogle Scholar
  17. 17.
    Dalca, A.V., Balakrishnan, G., Guttag, J., Sabuncu, M.R.: Unsupervised learning for fast probabilistic diffeomorphic registration. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 729–738. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00928-1_82CrossRefGoogle Scholar
  18. 18.
    Sedghi, A., et al.: Semi-supervised image registration using deep learning. In: SPIE Medical Imaging, vol. 10951, p. 109511G (2019)Google Scholar
  19. 19.
    Risholm, P., Balter, J., Wells, W.M.: Estimation of delivered dose in radiotherapy: the influence of registration uncertainty. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011. LNCS, vol. 6891, pp. 548–555. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-23623-5_69CrossRefGoogle Scholar
  20. 20.
    Risholm, P., Pieper, S., Samset, E., Wells, W.M.: Summarizing and visualizing uncertainty in non-rigid registration. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010. LNCS, vol. 6362, pp. 554–561. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-642-15745-5_68CrossRefGoogle Scholar
  21. 21.
    Simpson, J.A., et al.: Ensemble learning incorporating uncertain registration. IEEE Trans. Med. Imaging 32(4), 748–756 (2013)CrossRefGoogle Scholar
  22. 22.
    Rohlfing, T.: Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE TMI 31(2), 153–163 (2012)Google Scholar
  23. 23.
    Fitzpatrick, J.M.: Fiducial registration error and target registration error are uncorrelated. In: Proceedings of SPIE, Medical Imaging 2009, vol. 7261 (2009)  https://doi.org/10.1117/12.813601
  24. 24.
    Min, Z., et al.: Statistical model of total target registration error in image-guided surgery. IEEE Trans. Auto. Sci. Eng. 31(2), 1–15 (2019)Google Scholar
  25. 25.
    Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Graduate School of Frontier SciencesThe University of TokyoTokyoJapan
  3. 3.School of ComputingQueen’s UniversityKingstonCanada
  4. 4.School of Engineering ScienceSimon Fraser UniversityBurnabyCanada
  5. 5.Computing Science DepartmentUniversity of AlbertaEdmontonCanada
  6. 6.McKelvey School of EngineeringWashington University in St. LouisSt. LouisUSA
  7. 7.Ecole de Technologie SuperieureMontrealCanada
  8. 8.Center for Advanced Intelligence ProjectRIKENTokyoJapan

Personalised recommendations