Skip to main content

Supervised Uncertainty Quantification for Segmentation with Multiple Annotations

  • Conference paper
  • First Online:
Book cover Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11765))

Abstract

The accurate estimation of predictive uncertainty carries importance in medical scenarios such as lung node segmentation. Unfortunately, most existing works on predictive uncertainty do not return calibrated uncertainty estimates, which could be used in practice. In this work we exploit multi-grader annotation variability as a source of ‘groundtruth’ aleatoric uncertainty, which can be treated as a target in a supervised learning problem. We combine this groundtruth uncertainty with a Probabilistic U-Net and test on the LIDC-IDRI lung nodule CT dataset and MICCAI2012 prostate MRI dataset. We find that we are able to improve predictive uncertainty estimates. We also find that we can improve sample accuracy and sample diversity. In real-world applications, our method could inform doctors about the confidence of the segmentation results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the PyTorch implementation for the Probabilistic U-Net model from https://github.com/stefanknegt/Probabilistic-Unet-Pytorch.

References

  1. Armato, S.G., McLennan, G., Bidaut, L., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on ct scans. Med Phys. 38, 915–931 (2011)

    Article  Google Scholar 

  2. Armato, S.G., et al.: Data from LIDC-IDRI. The Cancer Imaging Archive (2015)

    Google Scholar 

  3. Ayhan, M.S., Berens, P.: Test-time data augmentation for estimation of heteroscedastic aleatoric uncertainty in deep neural networks. In: MIDL (2018)

    Google Scholar 

  4. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. CoRR abs/1601.00670 (2016)

    Google Scholar 

  5. Bragman, F.J., et al.: Quality control in radiotherapy-treatment planning using multi-task learning and uncertainty estimation. In: MIDL (2018)

    Google Scholar 

  6. Causey, J., et al.: Highly accurate model for prediction of lung nodule malignancy with CT scans. CoRR abs/1802.01756 (2018)

    Google Scholar 

  7. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26, 1045–1057 (2013)

    Article  Google Scholar 

  8. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis, University of Cambridge (2016)

    Google Scholar 

  9. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)

    Google Scholar 

  10. Gruetzemacher, R., Gupta, A., Paradice, D.B.: 3D deep learning for detecting pulmonary nodules in CT scans. JAMIA 25, 1301–1310 (2018)

    Google Scholar 

  11. Gu, Y., et al.: Automatic lung nodule detection using A 3D deep convolutional neural network combined with a multi-scale prediction strategy in chest CTs. Comput. Biol. Med. 103, 220–231 (2018)

    Article  Google Scholar 

  12. Jungo, A., Meier, R., Ermis, E., Herrmann, E., Reyes, M.: Uncertainty-driven sanity check: application to postoperative brain tumor cavity segmentation. In: MIDL (2018)

    Google Scholar 

  13. Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NIPS (2017)

    Google Scholar 

  14. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: NIPS (2015)

    Google Scholar 

  15. Kiureghian, A.D., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Struct. Saf. 31, 105–112 (2009)

    Article  Google Scholar 

  16. Kohl, S.A., et al.: A probabilistic u-net for segmentation of ambiguous images. In: NIPS (2018)

    Google Scholar 

  17. Lampert, T.A., Stumpf, A., Gancarski, P.: An empirical study of expert agreement and ground truth estimation. IEEE Trans. Image Process. 25, 2557–2572 (2016)

    Article  MathSciNet  Google Scholar 

  18. Litjens, G., Debats, O., van de Ven, W., Karssemeijer, N., Huisman, H.: A pattern recognition approach to zonal segmentation of the prostate on MRI. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7511, pp. 413–420. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33418-4_51

    Chapter  Google Scholar 

  19. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992)

    Article  Google Scholar 

  20. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: International Conference on Document Analysis and Recognition (2003)

    Google Scholar 

  21. Tanno, R., et al.: Bayesian image quality transfer with CNNs: exploring uncertainty in dMRI super-resolution. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp. 611–619. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7_70

    Chapter  Google Scholar 

  22. Wang, S., et al.: Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation. Med. Image Anal. 40, 172–183 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dimitrios Mavroeidis for helpful discussions and Arsenii Ashukha for the variational dropout code. This research was supported by NWO Perspective Grants DLMedIA and EDL, as well as the in-cash and in-kind contributions by Philips.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, S., Worrall, D., Knegt, S., Veeling, B., Huisman, H., Welling, M. (2019). Supervised Uncertainty Quantification for Segmentation with Multiple Annotations. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11765. Springer, Cham. https://doi.org/10.1007/978-3-030-32245-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32245-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32244-1

  • Online ISBN: 978-3-030-32245-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics