Skip to main content

Nuclei Segmentation in Histopathological Images Using Two-Stage Learning

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11764))

Abstract

Nuclei segmentation is a fundamental and important task in histopathological image analysis. However, it still has some challenges such as difficulty in segmenting the overlapping or touching nuclei, and limited ability of generalization to different organs and tissue types. In this paper, we propose a novel nuclei segmentation approach based on a two-stage learning framework and Deep Layer Aggregation (DLA). We convert the original binary segmentation task into a two-step task by adding nuclei-boundary prediction (3-classes) as an intermediate step. To solve our two-step task, we design a two-stage learning framework by stacking two U-Nets. The first stage estimates nuclei and their coarse boundaries while the second stage outputs the final fine-grained segmentation map. Furthermore, we also extend the U-Nets with DLA by iteratively merging features across different levels. We evaluate our proposed method on two public diverse nuclei datasets. The experimental results show that our proposed approach outperforms many standard segmentation architectures and recently proposed nuclei segmentation methods, and can be easily generalized across different cell types in various organs.

Keywords

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
EUR   29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR   85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR   105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, pp. 41–48. ACM (2009)

    Google Scholar 

  2. Bi, L., et al.: Dermoscopic image segmentation via multistage fully convolutional networks. IEEE Trans. Biomed. Eng. 64(9), 2065–2074 (2017)

    Article  Google Scholar 

  3. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2487–2496 (2016)

    Google Scholar 

  4. Chow, K.H., Factor, R.E., Ullman, K.S.: The nuclear envelope environment and its cancer connections. Nat. Rev. Cancer 12(3), 196 (2012)

    Article  Google Scholar 

  5. Christ, P.F.: Automatic liver and lesion segmentation in CT using cascaded fully convolutional neural networks and 3d conditional random fields. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 415–423. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_48

    Chapter  Google Scholar 

  6. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., et al. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  7. Filipczuk, P., Fevens, T., Krzyżak, A., Monczak, R.: Computer-aided breast cancer diagnosis based on the analysis of cytological images of fine needle biopsies. IEEE Trans. Med. Imaging 32(12), 2169–2178 (2013)

    Article  Google Scholar 

  8. Gurcan, M.N., Boucheron, L., et al.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147 (2009)

    Article  Google Scholar 

  9. He, K., Gkioxari, G., et al.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  10. Kumar, N., et al.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  11. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  12. Naylor, P., Lae, M., Reyal, F., Walter, T.: Nuclei segmentation in histopathology images using deep neural networks. In: ISBI 2017, pp. 933–936. IEEE (2017)

    Google Scholar 

  13. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2019)

    Article  Google Scholar 

  14. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV, pp. 1520–1528 (2015)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  16. Sevastopolsky, A., et al.: Stack-u-net: refinement network for image segmentation on the example of optic disc and cup. arXiv preprint arXiv:1804.11294 (2018)

  17. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)

    Article  Google Scholar 

  18. Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)

    Article  Google Scholar 

  19. Yu, F., et al.: Deep layer aggregation. In: CVPR, pp. 2403–2412 (2018)

    Google Scholar 

  20. Zeiler, M.D.: Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701 (2012)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbo Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kang, Q., Lao, Q., Fevens, T. (2019). Nuclei Segmentation in Histopathological Images Using Two-Stage Learning. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_78

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics