Skip to main content

Improving Nuclei/Gland Instance Segmentation in Histopathology Images by Full Resolution Neural Network and Spatial Constrained Loss

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11764))

Abstract

Image segmentation plays an important role in pathology image analysis as the accurate separation of nuclei or glands is crucial for cancer diagnosis and other clinical analyses. The networks and cross entropy loss in current deep learning-based segmentation methods originate from image classification tasks and have drawbacks for segmentation. In this paper, we propose a full resolution convolutional neural network (FullNet) that maintains full resolution feature maps to improve the localization accuracy. We also propose a variance constrained cross entropy (varCE) loss that encourages the network to learn the spatial relationship between pixels in the same instance. Experiments on a nuclei segmentation dataset and the 2015 MICCAI Gland Segmentation Challenge dataset show that the proposed FullNet with the varCE loss achieves state-of-the-art performance. The code is publicly available (https://github.com/huiqu18/FullNet-varCE).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Chen, H., Qi, X., Yu, L., Heng, P.A.: DCAN: deep contour-aware networks for accurate gland segmentation. In: Proceedings of CVPR, pp. 2487–2496 (2016)

    Google Scholar 

  2. Graham, S., et al.: MILD-Net: minimal information loss dilated network for gland instance segmentation in colon histology images. Med. Image Anal. 52, 199–211 (2019)

    Article  Google Scholar 

  3. Gurcan, M.N., Boucheron, L., Can, A., Madabhushi, A., Rajpoot, N., Yener, B.: Histopathological image analysis: a review. IEEE Rev. Biomed. Eng. 2, 147 (2009)

    Article  Google Scholar 

  4. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of CVPR, vol. 1, p. 3 (2017)

    Google Scholar 

  5. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inform. 7, 29 (2016)

    Article  Google Scholar 

  6. Kumar, N., Verma, R., Sharma, S., Bhargava, S., Vahadane, A., Sethi, A.: A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans. Med. Imaging 36(7), 1550–1560 (2017)

    Article  Google Scholar 

  7. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  8. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the ICML, vol. 30, p. 3 (2013)

    Google Scholar 

  9. Qu, H., et al.: Joint segmentation and fine-grained classification of nuclei in histopathology images. In: ISBI 2019, pp. 900–904. IEEE (2019)

    Google Scholar 

  10. Qu, H., et al.: Weakly supervised deep nuclei segmentation using points annotation in histopathology images. In: MIDL 2019, pp. 390–400 (2019)

    Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Sirinukunwattana, K., et al.: Gland segmentation in colon histology images: the glas challenge contest. Med. Image Anal. 35, 489–502 (2017)

    Article  Google Scholar 

  13. Su, H., Xing, F., Kong, X., Xie, Y., Zhang, S., Yang, L.: Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising autoencoders. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 383–390. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_46

    Chapter  Google Scholar 

  14. Wang, P., et al.: Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460. IEEE (2018)

    Google Scholar 

  15. Xu, Y., Li, Y., Liu, M., Wang, Y., Lai, M., Chang, E.I.-C.: Gland instance segmentation by deep multichannel side supervision. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 496–504. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_57

    Chapter  Google Scholar 

  16. Xu, Y., et al.: Gland instance segmentation using deep multichannel neural networks. IEEE Trans. Biomed. Eng. 64(12), 2901–2912 (2017)

    Article  Google Scholar 

  17. Yan, Z., Yang, X., Cheng, K.-T.T.: A deep model with shape-preserving loss for gland instance segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 138–146. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_16

    Chapter  Google Scholar 

  18. Yang, L., Zhang, Y., Chen, J., Zhang, S., Chen, D.Z.: Suggestive annotation: a deep active learning framework for biomedical image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 399–407. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_46

    Chapter  Google Scholar 

  19. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR 2016 (2016)

    Google Scholar 

  20. Yu, F., Koltun, V., Funkhouser, T.A.: Dilated residual networks. In: Proceedings of CVPR, vol. 2, p. 3 (2017)

    Google Scholar 

  21. Zhang, X., Xing, F., Su, H., Yang, L., Zhang, S.: High-throughput histopathological image analysis via robust cell segmentation and hashing. Med. Image Anal. 26(1), 306–315 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Qu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qu, H., Yan, Z., Riedlinger, G.M., De, S., Metaxas, D.N. (2019). Improving Nuclei/Gland Instance Segmentation in Histopathology Images by Full Resolution Neural Network and Spatial Constrained Loss. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11764. Springer, Cham. https://doi.org/10.1007/978-3-030-32239-7_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32239-7_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32238-0

  • Online ISBN: 978-3-030-32239-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics