Skip to main content

Improved DeepWalk Algorithm Based on Preference Random Walk

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11838))

Abstract

Network representation learning based on neural network originates from language modeling based on neural network. These two types of tasks are then studied and applied along different paths. DeepWalk is the most classical network representation learning algorithm, which samples the next hop nodes of the walker with an equal probability method through the random walk strategy. Node2vec improves the random walk procedures, thus improving the performance of node2vec algorithm on various tasks. Therefore, we propose an improved DeepWalk algorithm based on preference random walk (PDW), which modifies the single undirected edge into two one-way directed edges in the network, and then gives each one-way directed edge a walk probability based on local random walk algorithm. In the procedures of acquiring walk sequences, the walk probability of the paths that have been walked will be attenuated according to the attenuation coefficient. For the last hop node of the current node in the walk sequences, an inhibition coefficient is set to prevent random walker from returning to the last node with a greater probability. In addition, we introduce the Alias sampling method in order to obtain the next hop node from the neighboring nodes of current node with a non-equal probability sampling. The experimental results show that the proposed PDW algorithm possesses a stable performance of network representation learning, the network node classification performance is better than that of the baseline algorithms used in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vedanayaki, M.: A study of data mining and social network analysis. J. Test. Eval. 40(7), 663–681 (2014)

    Google Scholar 

  2. Bhat, S.Y., Abulaish, M.: Analysis and mining of online social networks: emerging trends and challenges. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 3(6), 408–444 (2013)

    Article  Google Scholar 

  3. Perozzi, B., Al-Rfou, R., Skiena, S., et al.: DeepWalk: online learning of social representations. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710. ACM, New York (2014)

    Google Scholar 

  4. Tu, C.C., Zhang, W.C., Liu, Z.Y., et al.: Max-margin DeepWalk: discriminative learning of network representation. In: International Joint Conference on Artificial Intelligence, pp. 3889–3895. AAAI, Palo Alto (2015)

    Google Scholar 

  5. Yang, C., Liu, Z.Y., Zhao, D., et al.: Network representation learning with rich text information. In: International Conference on Artificial Intelligence, pp. 2111–2117. AAAI, Palo Alto (2015)

    Google Scholar 

  6. Wang, D., Cui, P., Zhu, W., et al.: Structural deep network embedding. In: The 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234. ACM, New York (2016)

    Google Scholar 

  7. Zhang, D., Jie, Y., Zhu, X., et al.: Network representation learning: a survey. IEEE Trans. Big Data PP(99), 1 (2017)

    Google Scholar 

  8. Li, W.J.: Predictive network representation learning for link prediction. http://101.96.10.64/www4.comp.polyu.edu.hk/~csztwang/paper/pnrl.pdf

  9. Doncheva, N.T., Morris, J.H., Gorodkin, J., et al.: Cytoscape StringApp: network analysis and visualization of proteomics data. J. Proteome Res. 18(2), 623–632 (2019)

    Article  Google Scholar 

  10. Zhao, W.X., Huang, J., Wen, J.-R.: Learning distributed representations for recommender systems with a network embedding approach. In: Ma, S., et al. (eds.) AIRS 2016. LNCS, vol. 9994, pp. 224–236. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48051-0_17

    Chapter  Google Scholar 

  11. Yu, X., Ren, X., Sun, Y.Z., et al.: Personalized entity recommendation: a heterogeneous information network approach. In: ACM International Conference on Web Search and Data Mining, pp. 283–292. ACM, New York (2014)

    Google Scholar 

  12. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM, New York (2016)

    Google Scholar 

  13. Ohata, F., Kondou, K., Inoue, K., et al.: Alias analysis method for object-oriented programs using alias flow graphs. Syst. Comput. Japan 35(4), 49–59 (2004)

    Article  Google Scholar 

  14. Lai, S., Liu, K., He, S., et al.: How to generate a good word embedding. IEEE Intell. Syst. 31(6), 5–14 (2016)

    Article  Google Scholar 

  15. Mikolov, T., Sutskever, I., Chen, K., et al.: Distributed representations of words and phrases and their compositionality. In: Twenty-Seventh Conference on Neural Information Processing System, pp. 3111–3119. MIT, Cambridge (2013)

    Google Scholar 

  16. Mikolov, T., Corrado, G., Chen, K., et al.: Efficient estimation of word representations in vector space. https://arxiv.org/abs/1301.3781

  17. Kingman, J.F.C.: Markov transition probabilities. Zeitschrift Für Wahrscheinlichkeitstheorie Und Verwandte Gebiete 7(4), 248–270 (1967)

    Article  MathSciNet  Google Scholar 

  18. Liu, W., Lü, L.Y.: Link prediction based on local random walk. Europhys. Lett. 89(5), 58007 (2010)

    Article  Google Scholar 

  19. Tang, J., Qu, M., Wang, M., et al.: LINE: large-scale information network embedding. In: International Conference on World Wide Web, pp. 1067–1077. Springer, Heidelberg (2014)

    Google Scholar 

  20. Chen, H., Perozzi, B., Hu, Y., et al.: HARP: hierarchical representation learning for networks. https://arxiv.org/abs/1706.07845

  21. Yang, C., Sun, M., Liu, Z., et al.: Fast network embedding enhancement via high order proximity approximation. In: International Joint Conference on Artificial Intelligence, pp. 3894–3900. Morgan Kaufmann, San Francisco (2017)

    Google Scholar 

  22. Cao, S., Lu, W., Xu, Q., et al.: GraRep: learning graph representations with global structural information. In: Conference on Information and Knowledge Management, pp. 891–900. ACM, New York (2015)

    Google Scholar 

  23. Fan, R.E., Chang, K.W., Hsieh, C.J., et al.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(9), 1871–1874 (2008)

    MATH  Google Scholar 

  24. Ye, Z., Zhao, H., Zhang, K., Zhu, Yu., Xiao, Y.: Text-associated max-margin DeepWalk. In: Xu, Z., Gao, X., Miao, Q., Zhang, Y., Bu, J. (eds.) Big Data 2018. CCIS, vol. 945, pp. 301–321. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-2922-7_21

    Chapter  Google Scholar 

Download references

Acknowledgement

This project is supported by NSFC (No. 11661069, 61663041 and 61763041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixing Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ye, Z., Zhao, H., Zhang, K., Zhu, Y., Xiao, Y., Wang, Z. (2019). Improved DeepWalk Algorithm Based on Preference Random Walk. In: Tang, J., Kan, MY., Zhao, D., Li, S., Zan, H. (eds) Natural Language Processing and Chinese Computing. NLPCC 2019. Lecture Notes in Computer Science(), vol 11838. Springer, Cham. https://doi.org/10.1007/978-3-030-32233-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32233-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32232-8

  • Online ISBN: 978-3-030-32233-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics