Skip to main content

How to Learn from Unlabeled Volume Data: Self-supervised 3D Context Feature Learning

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11769))

Abstract

The vast majority of 3D medical images lacks detailed image-based expert annotations. The ongoing advances of deep convolutional neural networks clearly demonstrate the benefit of supervised learning to successfully extract relevant anatomical information and aid image-based analysis and interventions, but it heavily relies on labeled data. Self-supervised learning, that requires no expert labels, provides an appealing way to discover data-inherent patterns and leverage anatomical information freely available from medical images themselves. In this work, we propose a new approach to train effective convolutional feature extractors based on a new concept of image-intrinsic spatial offset relations with an auxiliary heatmap regression loss. The learned features successfully capture semantic, anatomical information and enable state-of-the-art accuracy for a k-NN based one-shot segmentation task without any subsequent fine-tuning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Code and pre-trained networks as well as detailed data preprocessing steps to enable reproducibility can be found at https://github.com/multimodallearning/miccai19_self_supervision.

References

  1. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  2. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)

    Google Scholar 

  3. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: ICCV (2017)

    Google Scholar 

  4. Ferrante, E., Dokania, P.K., Silva, R.M., Paragios, N.: Weakly-supervised learning of metric aggregations for deformable image registration. IEEE J. Biomed. Health Inform. (2018)

    Google Scholar 

  5. Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point forests and binary context features. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 598–606. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_69

    Chapter  Google Scholar 

  6. Jamaludin, A., Kadir, T., Zisserman, A.: Self-supervised learning for spinal MRIs. In: DLMIA (2017)

    Chapter  Google Scholar 

  7. Maier-Hein, L., et al.: Crowd-algorithm collaboration for large-scale endoscopic image annotation with confidence. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 616–623. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_71

    Chapter  Google Scholar 

  8. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  9. Reed, S., Lee, H., Anguelov, D., Szegedy, C., Erhan, D., Rabinovich, A.: Training deep neural networks on noisy labels with bootstrapping. ICLR workshop (2015)

    Google Scholar 

  10. Roy, A.G., Siddiqui, S., Pölsterl, S., Navab, N., Wachinger, C.: ‘squeeze & excite’ guided few-shot segmentation of volumetric images. arXiv:1902.01314 (2019)

  11. Shin, H.C., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  12. Tajbakhsh, N., et al.: Surrogate supervision for medical image analysis: Effective deep learning from limited quantities of labeled data. In: ISBI (2019)

    Google Scholar 

  13. Jimenez-del Toro, O., et al.: Cloud-based evaluation of anatomical structure segmentation and landmark detection algorithms: visceral anatomy benchmarks. IEEE Trans. Med. Imaging 35(11), 2459–2475 (2016)

    Article  Google Scholar 

  14. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  15. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG) under grant number 320997906 (HE 7364/2-1). We gratefully acknowledge the support of the NVIDIA Corporation with their GPU donations for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Blendowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blendowski, M., Nickisch, H., Heinrich, M.P. (2019). How to Learn from Unlabeled Volume Data: Self-supervised 3D Context Feature Learning. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11769. Springer, Cham. https://doi.org/10.1007/978-3-030-32226-7_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32226-7_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32225-0

  • Online ISBN: 978-3-030-32226-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics