Skip to main content

3DFPN-HS\(^2\): 3D Feature Pyramid Network Based High Sensitivity and Specificity Pulmonary Nodule Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2019 (MICCAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11769))

Abstract

Accurate detection of pulmonary nodules with high sensitivity and specificity is essential for automatic lung cancer diagnosis from CT scans. Although many deep learning-based algorithms make great progress for improving the accuracy of nodule detection, the high false positive rate is still a challenging problem which limited the automatic diagnosis in routine clinical practice. In this paper, we propose a novel pulmonary nodule detection framework based on a 3D Feature Pyramid Network (3DFPN) to improve the sensitivity of nodule detection by employing multi-scale features to increase the resolution of nodules, as well as a parallel top-down path to transit the high-level semantic features to complement low-level general features. Furthermore, a High Sensitivity and Specificity (HS\(^2\)) network is introduced to eliminate the falsely detected nodule candidates by tracking the appearance changes in continuous CT slices of each nodule candidate. The proposed framework is evaluated on the public Lung Nodule Analysis (LUNA16) challenge dataset. Our method is able to accurately detect lung nodules at high sensitivity and specificity and achieves \(90.4\%\) sensitivity with 1/8 false positive per scan which outperforms the state-of-the-art results \(15.6\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaa, S., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the LUNA16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  2. Davis, J.W.: Hierarchical motion history images for recognizing human motion. In: Proceedings IEEE Workshop on Detection and Recognition of Events in Video, pp. 39–46 (2001)

    Google Scholar 

  3. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_64

    Chapter  Google Scholar 

  4. Dou, Q., Chen, H., Jin, Y., Lin, H., Qin, J., Heng, P.-A.: Automated pulmonary nodule detection via 3D ConvNets with online sample filtering and hybrid-loss residual learning. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 630–638. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_72

    Chapter  Google Scholar 

  5. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  6. Khosravan, N., Bagci, U.: S4ND: single-shot single-scale lung nodule detection. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 794–802. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_88

    Chapter  Google Scholar 

  7. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  8. Setio, A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  9. Wang, B., Qi, G., Tang, S., Zhang, L., Deng, L., Zhang, Y.: Automated pulmonary nodule detection: high sensitivity with few candidates. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 759–767. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_84

    Chapter  Google Scholar 

  10. Yang, X., Zhang, C., Tian, Y.: Recognizing actions using depth motion maps-based histograms of oriented gradients. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 1057–1060 (2012)

    Google Scholar 

  11. Zhu, W., Liu, C., Fan, W., Xie, X.: DeepLung: deep 3D dual path nets for automated pulmonary nodule detection and classification. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 673–681 (2018)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under award number IIS-1400802 and Memorial Sloan Kettering Cancer Center Support Grant/Core Grant P30 CA008748. Oguz Akin, MD serves as a scientific advisor for Ezra AI, Inc., which is unrelated to the research being reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingli Tian .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4146 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Cao, L., Akin, O., Tian, Y. (2019). 3DFPN-HS\(^2\): 3D Feature Pyramid Network Based High Sensitivity and Specificity Pulmonary Nodule Detection. In: Shen, D., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2019. MICCAI 2019. Lecture Notes in Computer Science(), vol 11769. Springer, Cham. https://doi.org/10.1007/978-3-030-32226-7_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32226-7_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32225-0

  • Online ISBN: 978-3-030-32226-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics