Skip to main content

MRI Brain Images Compression and Classification Using Different Classes of Neural Networks

  • Conference paper
  • First Online:
New Trends in Model and Data Engineering (MEDI 2019)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1085))

Included in the following conference series:

Abstract

The aim of this paper is to build an automatic system for compression and classification for magnetic resonance imaging brain images. The algorithm segments the images in order to separate regions of medical interest from its background. Only the regions of interest are compressed with a low-ratio scheme, while the rest of the image is compressed with a high-ratio scheme. Based on Convolutional Neural Network (CNN) method for classification and a Probabilistic Neural Network (PNN) for image segmentation, the system has been developed. Experiments were conducted to evaluate the performance of our approach using different optimizers with a huge dataset of MRI brain images. Results confirmed that the Root Mean Square Propagation (RMSprop) optimizer converges faster with a highest accuracy comparing to other optimizers and showed that the proposed preprocessing schema reduced the execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jiang, W.W., Kiang, S.Z., Hakim, N.Z., Meadows, H.E.: Lossless compression for medical imaging systems using linear/non-linear prediction and arithmetic coding. In: Proceedings of the IEEE International Symposium on Circuits and Systems, vol. 1, pp. 283–286 (1993)

    Google Scholar 

  2. Panagiotidis, N.G., Kalogeras, D., Kollias, S.D., Stafylopatis, A.: Neural network-assisted effective lossy compression of medical images. Proc. IEEE 84(10), 283–286 (1996)

    Article  Google Scholar 

  3. Li, X., Bhide, S., Kabuka, M.R.: Labeling of MR brain images using Boolean neural network. IEEE Trans. Med. Imaging 15(5), 628–638 (1996)

    Article  Google Scholar 

  4. Jiang, J.: Image compression with neural networks: a survey. Sig. Process. Image Commun. 14, 737–760 (1999)

    Article  Google Scholar 

  5. Specht, D.F.: Probabilistic neural networks. Neural Networks 3, 109–118 (1990)

    Article  Google Scholar 

  6. Mougeot, M., Azencott, R., Angeniol, B.: Image compression with back-propagation: improvement of the visual restoration using different cost functions. Neural Networks 4(4), 467–476 (1991)

    Article  Google Scholar 

  7. Mcculloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5(4), 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  8. Hu, M.K.: Visual pattern recognition by moment invariant. IRE Trans. Info. Theory 8(2), 179–187 (1962)

    Article  Google Scholar 

  9. Gordillo, N., Montseny, E., Sobrevilla, P.: State of the art survey on MRI brain tumor segmentation. Magn. Reson. Imaging 31(8), 1426–1438 (2013)

    Article  Google Scholar 

  10. Dimitrovski, I., Kocev, D., Kitanovski, I., Loskovska, S., Dzeroski, S.: Improved medical image modality classification using a combination of visual and textual features. Comput. Med. Imaging Graph. 39, 14–26 (2014)

    Article  Google Scholar 

  11. Erickson, B.J., Korfiatis, P., Akkus, Z., Kline, T.L.: Machine learning for medical imaging. In: RSNA Annual Meeting, November 2016

    Google Scholar 

  12. Affonso, C., Rossi, A.L., Vieira, F., Carvalho, A.: Deep learning for biological image classification. Expert Syst. Appl. 85, 114–122 (2017)

    Article  Google Scholar 

  13. R. Haralick, K. Shanmugam, and I. Dinstein “Textural features for image classification”. IEEE Trans. (1973)

    Google Scholar 

  14. Tang, Q., Liu, Y., Liu, H.: Medical image classification via multiscale representation learning. Artif. Intell. Med. 79, 71–78 (2017)

    Article  Google Scholar 

  15. Le, Q.V.: Building High-Level Features Using Large Scale Unsupervised Learning. Google Inc., USA (2012)

    Google Scholar 

  16. Mohan, G., Subashini, M.: MRI Based Medical Image Analysis: Survey on brain tumor grade classification. Biomed. Sig. Process. Control 39, 139–161 (2017)

    Article  Google Scholar 

  17. Descombes, X., et al.: Vascular network segmentation: an unsupervised approach. In: IEEE 9th International Symposium of Biomedical Imaging (ISBI), vol. 0, pp. 1248–1251 (2012)

    Google Scholar 

  18. Descombes, X., et al.: Brain tumor vascular network segmentation from micro-tomography. In: IEEE 8th International Symposium of Biomedical Imaging (ISBI), vol. 0, pp. 1113–1116 (2011)

    Google Scholar 

  19. El Boustani, A., Kinsner, W.: Selective compression of MRI brain images using two classes of neural networks. In: Proceedings of the International Conference on Image and Signal Processing, ICISP01, vol. 1 of 2, pp. 216–220 (2001)

    Google Scholar 

  20. Kheradpisheh, S.R., Ganjtabesh, M., Thorpe, S.J., Masquelier, T.: STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67 (2017)

    Article  Google Scholar 

  21. Clark, K., et al.: Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  22. Mukkamala, M.C., Hein, M.: Variants of RMSProp and adagrad with logarithmic regret bounds. In: International Conference on Machine Learning, Sydney, Australia (2017)

    Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR 2015 (2015)

    Google Scholar 

  24. Roy, S., Das, N., Kundu, M., Nasipuri, M.: Handwritten Isolated Bangla Compound Character Recognition: a new benchmark using a novel deep learning approach. Pattern Recogn. Lett. 90, 15–21 (2017)

    Article  Google Scholar 

  25. El Boustani, A., Aatila, M., El Bachari, E., El Oirrak, A.: MRI brain images classification using convolutional neural networks. In: Attiogbe, C., et al. (eds.) MEDI 2019, Workshops, CCIS 1085, pp. x-y, 2019. Springer, Cham (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelhakim El Boustani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El Boustani, A., El Bachari, E. (2019). MRI Brain Images Compression and Classification Using Different Classes of Neural Networks. In: Attiogbé, C., Ferrarotti, F., Maabout, S. (eds) New Trends in Model and Data Engineering. MEDI 2019. Communications in Computer and Information Science, vol 1085. Springer, Cham. https://doi.org/10.1007/978-3-030-32213-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32213-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32212-0

  • Online ISBN: 978-3-030-32213-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics