Skip to main content

Introduction to Location Science

  • Chapter
  • First Online:
Location Science

Abstract

This chapter introduces modern Location Science. It traces the roots of the area and describes the path leading to the full establishment of this research field. It identifies several disciplines having strong links with Location Science and offers examples of areas in which the knowledge accumulated in the field of location has been applied with great success. It describes the purpose and structure of this volume. Finally, it provides suggestions on how to make use of the contents presented in this book, namely for organizing general or specialized location courses targeting different audiences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The problem is presented in his famous essay on maxima and minima.

  2. 2.

    Node O was called by Launhardt the pole of the locational triangle.

  3. 3.

    The author is now known to be Andrew Vázsonyi (1916–2003).

References

  • Avella P, Benati S, Cánovas-Martinez L, Dalby K, Di Girolamo D, Dimitrijevic B, Giannikos I, Guttman N, Hultberg TH, Fliege J, Muñoz-Márquez M, Ndiaye MM, Nickel S, Peeters P, Pérez-Brito D, Policastro S, Saldanha da Gama F, Zidda P (1998) Some personal views on the current state and the future of locational analysis. Eur J Oper Res 104:269–287

    Article  Google Scholar 

  • Balinski ML (1965) Integer programming: methods, uses, computation. Manag Sci 12:253–313

    Article  MathSciNet  Google Scholar 

  • Benko D, Coroian D (2018) A new angle on the Fermat-Torricelli point. Coll Math J 49:195–199

    Article  MathSciNet  Google Scholar 

  • Block D, DuPuis EM (2001) Making the country work for the city. Am J Econ Soc 60:79–98

    Article  Google Scholar 

  • Brandeau ML, Chiu SS (1989) An overview of representative problems in location research. Manag Sci 35:645–674

    Article  MathSciNet  Google Scholar 

  • Brimberg J, Drezner Z (2013) A new heuristic for solving the p-median problem in the plane. Comput Oper Res 40:427–437

    Article  MathSciNet  Google Scholar 

  • Brimberg J, Drezner Z, Mladenović N, Salhi S (2014) A new local search for continuous location problems. Eur J Oper Res 232:256–265

    Article  MathSciNet  Google Scholar 

  • Chao I-M (2002) A tabu search method for the truck and trailer routing problem. Comput Oper Res 29:33–51

    Article  Google Scholar 

  • Cooper L (1963) Location-allocation problems. Oper Res 11:331–343

    Article  MathSciNet  Google Scholar 

  • Daskin MS (2013) Network and discrete location: models, algorithms and applications, 2nd edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Drezner Z (ed) (1995) Facility location: a survey of applications and methods. Springer, New York

    Google Scholar 

  • Drezner Z, Hamacher H (eds) (2002) Facility location: applications and theory. Springer, Berlin

    MATH  Google Scholar 

  • Drezner Z, Salhi S (2017) Incorporating neighborhood reduction for the solution of the planar p-median problem. Ann Oper Res 258:639–654

    Article  MathSciNet  Google Scholar 

  • Drezner Z, Brimberg J, Mladenović N, Salhi S (2014) New heuristic algorithms for solving the planar p-median problem. Comput Oper Res 62:296–304

    Article  MathSciNet  Google Scholar 

  • Drezner Z, Brimberg J, Mladenović N, Salhi S (2015) Solving the planar p-median problem by variable neighborhood and concentric searches. J Global Optim 63:501–514

    Article  MathSciNet  Google Scholar 

  • Eiselt HA, Marianov V (eds) (2011) Foundations of location analysis. Springer, New York

    MATH  Google Scholar 

  • Fischer K (2011) Central places: the theories of von Thünen, Christaller, and Lösch. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New York, pp 471–505

    Chapter  Google Scholar 

  • Gollowitzer S, Ljubić I (2011) MIP models for connected facility location: a theoretical and computational study. Comput Oper Res 38:435–449

    Article  MathSciNet  Google Scholar 

  • Goodman JE, O’Rourke J, Tóth CD (eds) (2017) Handbook of discrete and computational geometry, 3rd edn. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Görner S, Kanzow C. (2016) On Newton’s method for the fermat-weber location problem. J Optim Theory Appl 170:107–118

    Article  MathSciNet  Google Scholar 

  • Hale TS, Moberg CR (2003) Location science research: a review. Ann Oper Res 123:21–35

    Article  MathSciNet  Google Scholar 

  • Hakimi SL (1964) Optimal location of switching centers and the absolute centers and medians of a graph. Oper Res 12:450–459

    Article  Google Scholar 

  • Hakimi SL (1965) Optimal distribution of switching centers in a communication network and some related graph theoretic problems. Oper Res 13:462–475

    Article  Google Scholar 

  • Heinen F (1834) Über Systeme von Kräften, deren Intensitäten sich wie die n. Potenzen der Entfernungen gegebener Punkte von einem Central-Punkte verhalten, in Beziehung auf Punkte, für welche die Summe der n. Entfernungs-Potenzen ein Maximum oder Minimum ist. Bädeker, Essen

    Google Scholar 

  • Launhardt C-F (1900) The principles of location: the theory of the trace. Part I: the commercial trace (Bewley A, Trans., 1900). Lawrence Asylum Press, Madras

    Google Scholar 

  • Lösch A (1944) The economics of location (Woglom WH, Trans., 1954). Yale University Press, New Haven

    Google Scholar 

  • Manne AS (1964) Plant location under economies of scale-decentralization and computation. Manag. Sci 11:213–235

    Article  Google Scholar 

  • Melo MT, Nickel S, Saldanha da Gama F (2006) Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput Oper Res 33:181–208

    Article  Google Scholar 

  • Mielhe W (1958) Link-length minimization in networks. Oper Res 6:232–243

    Article  MathSciNet  Google Scholar 

  • Mirchandani PB, Francis RL (eds) (1990) Discrete location theory. Wiley, New York

    MATH  Google Scholar 

  • Nam NM (2013) The Fermat-Torricelli problem in the light of convex analysis. In: ArXiv e-prints. Provided by the SAO/NASA Astrophysics Data System. http://adsabs.harvard.edu/abs/2013arXiv1302.5244M

  • Nickel S, Puerto J (2005) Location theory: a unified approach. Springer, Berlin-Heidelberg

    MATH  Google Scholar 

  • Nickel S, Schöbel A, Sonneborn T (2001) Hub location problems in urban traffic networks. In: Niittymaki J, Pursula M (eds) Mathematical methods and optimization in transportation systems. Kluwer Academic Publishers, Dordrecht, pp 1–12

    MATH  Google Scholar 

  • Okabe A, Suzuki A (1997) Locational optimization problems solved through Voronoi diagrams. Eur J Oper Res 98:445–456

    Article  Google Scholar 

  • Pinto JV (1977) Launhardt and location theory: rediscovery of a neglected book. J Reg Sci 17:17–29

    Article  Google Scholar 

  • Plastria F (2011) The Weiszfeld algorithm: proof, amendments, and extensions. In: Eiselt HA, Marianov V (eds) Foundations of location analysis. Springer, New York, pp 357–389

    Chapter  Google Scholar 

  • ReVelle CS, Eiselt HA (2005) Location analysis: a synthesis and survey. Eur J Oper Res 165:1–19

    Article  MathSciNet  Google Scholar 

  • ReVelle CS, Laporte G (1996) The plant location problem: new models and research prospects. Oper Res 44:864–874

    Article  Google Scholar 

  • ReVelle CS, Swain RW (1970) Central facilities location. Geogr Anal 2:30–42

    Article  Google Scholar 

  • ReVelle CS, Eiselt HA, Daskin MS (2008) A bibliography for some fundamental problem categories in discrete location science. Eur J Oper Res 184:817–848

    Article  MathSciNet  Google Scholar 

  • Smith HK, Laporte G, Harper PR (2009) Locational analysis: highlights of growth to maturity. J Oper Res Soc 60:S140–S148

    Article  Google Scholar 

  • Toregas C, Swain R, ReVelle CS, Bergman L (1971) The location of emergency service facilities. Oper Res 19:1363–1373

    Article  Google Scholar 

  • von Thünen JH (1842) The isolated state (Wartenberg CM, Trans., 1966). Pergamon Press, Oxford

    Google Scholar 

  • Weber A (1909) Theory of the location of industries (Friedrich CJ, Trans., 1929). University of Chicago Press, Chicago

    Google Scholar 

  • Weiszfeld EV (1937) Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math J 43:335–386

    MATH  Google Scholar 

  • Wesolowsky GO (1993) The Weber problem: history and perspectives. Locat Sci 1:5–23

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Saldanha-da-Gama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Laporte, G., Nickel, S., Saldanha-da-Gama, F. (2019). Introduction to Location Science. In: Laporte, G., Nickel, S., Saldanha da Gama, F. (eds) Location Science. Springer, Cham. https://doi.org/10.1007/978-3-030-32177-2_1

Download citation

Publish with us

Policies and ethics