Skip to main content

Measuring the Lifetime Environment in LMICs: Perspectives from Epidemiology, Environmental Health, and Anthropology

  • 538 Accesses

Abstract

Across the lifetime, each person will experience and accumulate countless exposures to the natural, built, social, and chemical components of the environment. These exposures occur in many ways, through people’s behaviors and lifestyle choices (for example, smoking, diet, or level of activity), physical contact (intentional or not) with chemicals, structures, or physical forces (for example, heat waves or hurricanes), or interactions with people, institutions, policies/laws, and geopolitical forces (for example, war). Whatever a person’s lifetime exposures may be, scientists believe that they affect human health in important ways, contributing either to the development of disease or to maintenance of good health. In the field of public health, exposures are called “risk factors” if they contribute to disease and “protective factors” if they contribute to health. This chapter discusses these factors.

Keywords

  • Exposure
  • Exposome
  • Health risks
  • Public health
  • Global health

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-32112-3_2
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-32112-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   109.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2

Notes

  1. 1.

    A biomarker is a substance that can be measured in the body, most often in blood, serum, or urine, but also in hair, feces, or even nails, that indicates the presence of an exposure or disease, or the body’s physiological state/status.

  2. 2.

    Omics is a term that refers to the characterization and quantification of biological molecules that are thought to represent the structure, function and dynamics of an organism.

  3. 3.

    Socio-exposome is an extension of the exposome framework and places special emphasis on the measurement of social experiences and the recognition of prior research on broader, social determinants of human health across the lifecycle.

  4. 4.

    Public health exposome is an answer to the scientific paradigms, which it considers unsatisfactory, for measuring the relationship between the environment, human health, and the disparities in health at the population level. It builds on the socio-ecological framework and extends the original concept of the exposome, with the aim of tracking and integrating complex relationships among exogenous and endogenous exposures across the life span.

References

  1. Rappaport SM, Smith MT. Environment and disease risks. Science. 2011;330:460–1.

    CrossRef  Google Scholar 

  2. Rappaport SM. Biomarkers intersect with the exposome. Biomarkers. 2012;17:483–9.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  3. Rice D, Barone S Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108:511S–33S.

    Google Scholar 

  4. Dover GJ. The Barker hypothesis: how pediatricians will diagnose and prevent common adult-onset diseases. Trans Am Clin Climatol Assoc. 2009;120:199.

    PubMed  PubMed Central  Google Scholar 

  5. Martorell R. Improved nutrition in the first 1000 days and adult human capital and health. Am J Hum Biol. 2017;29:e22952.

    CrossRef  Google Scholar 

  6. Marmot M, Friel S, Bell B, Houweling TAJ, Taylor S. Closing the gap in a generation: health equity through action on the social determinants of health. Lancet. 2008;372:1661–9.

    PubMed  CrossRef  Google Scholar 

  7. Tulve NS, Ruiz JDC, Lichtveld K, Darney SP, Quackenboss JJ. Development of a conceptual framework depicting a child’s total (built, natural, social) environment in order to optimize health and well-being. J Environ Health Sci. 2016;2:1–8.

    CrossRef  Google Scholar 

  8. McLeroy KR, Bibeau D, Steckler A, Glanz K. An ecological perspective on health promotion programs. Health Educ Q. 1988;15:351–77.

    CAS  PubMed  CrossRef  Google Scholar 

  9. Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev. 2005;14:1847–50.

    CAS  CrossRef  Google Scholar 

  10. National Research Council (NRC). Exposure science in the 21st century: a vision and a strategy. Washington, DC: National Academies of Science; 2012.

    Google Scholar 

  11. Wild CP. The expsome: from concept to utility. Int J Epidemiol. 2012;41:24–32.

    PubMed  CrossRef  Google Scholar 

  12. Cui Y, Balshaw DM, Kwok RK, Thompson CL, Collman GW, Birnbaum LS. The exposome: embracing the complexity for discovery in environmental health. Environ Health Perspect. 2016;124:A137–40.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  13. Rappaport SM. Implications of the exposome for exposure science. J Expo Sci Environ Epidemiol. 2011;21:5–9.

    CAS  PubMed  CrossRef  Google Scholar 

  14. Lioy PJ, Rappaport SM. Exposure science and the exposome: an opportunity for cohoerence in the environmental health sciences. Environ Health Perspect. 2011;119:A466–7.

    PubMed  PubMed Central  Google Scholar 

  15. Peters A, Hoek G, Katsouyanni K. Understanding the link between environmental exposures and health: does the exposome promise too much? Br Med J. 2012;66:103–5.

    Google Scholar 

  16. Argaw A, Hanley-Cook G, De Cock N, Kolsteren P, Hyubregts L, Lachat C. Drivers of under-five stunting trend in 14 low- and middle-income countries since the turn of the millennium: a multilevel pooled analysis of 50 demographic and health surveys. Nutrients. 2019;11:2485.

    PubMed Central  CrossRef  Google Scholar 

  17. Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatr. 2018;107:1310–21.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  18. Leroy JL, Ruel M, Habicht JP, Frongillo EA. Linear growth deficit continues to accumulate beyond the first 1000 days in low- and middle-income countries: global evidence from 51 national surveys. J Nutr. 2014;144:1460–6.

    CAS  PubMed  CrossRef  Google Scholar 

  19. Prüs-Ustün A, Bartram J, Clasen T, Colford JM Jr, Cumming O, Curtis V, Bonjour S, et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Tropical Med Int Health. 2014;19:894–905.

    CrossRef  Google Scholar 

  20. Dillingham R, Guerrant RL. Childhood stunting: measuring and stemming the staggering costs of inadequante water and sanitation. Lancet. 2004;363:94–5.

    PubMed  CrossRef  Google Scholar 

  21. Lima AAM, Guerrant RL. Strategies to reduce the devastating costs of early childhood diarrhea and its potential long-term impact: imperatives that we can no longer afford to ignore. Clin Infect Dis. 2004;38:1552–4.

    PubMed  CrossRef  Google Scholar 

  22. Smith LE, Prendergast AJ, Turner PC, Humphrey JH, Stoltzfus RJ. Aflatoxin exposure during pregnancy, maternal anemia, and adverse birth outcomes. Am J Trop Med Hyg. 2017;96:770–6.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  23. Hu H, Téllez-Rojo MM, Bellinger D, Smith D, Ettinger AS, Lamadrid-Figueroa H, Schwartz J, Schnaas L, Mercado-García A, Hernández-Avila M. Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ Health Perspect. 2006;114:1730–5.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  24. Cantoral A, Téllez-Rojo MM, Levy TS, Hernández-Ávila M, Schnaas L, Hu H, Peterson KE, Ettinger AS. Differential association of lead on length by zinc status in two-year old Mexican children. Environ Health. 2015;14:95.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  25. Plusquellec P, Muckle G, Dewailly E, Ayotte P, Jacobson SW, Jacobson JL. The relation of low-level prenatal lead exposure to behavioral indicators of attention in Inuit infants in Arctic Quebec. Neurotoxicol Teratol. 2007;29:527–37.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  26. Suarez-Lopez JR, Checkoway H, Jacobs DR Jr, Al-Delaimy WK, Gahagan S. Potential short-term neurobehavioral alterations in children associated with a peak pesticide spray season: The Mother’s Day flower harvest in Ecuador. Neurotoxicol. 2017;60:125–33.

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  27. Rosas LG, Eskenazi B. Pesticides and child neurodevelopment. Curr Opin Pediatr. 2008;20:191–7.

    PubMed  CrossRef  Google Scholar 

  28. Torres-Sánchez L, Schnaas L, Rothenberg SJ, Cebrián ME, Osorio-Valencia E, Hernández MC, García-Hernández RM, López-Carrillo L. Prenatal p,p’-DDE exposure and neurodevelopment among children 3.5–5 years of age. Environ Health Perspect. 2013;121:263–8.

    Google Scholar 

  29. Rana J, Uddin J, Peltier R, Oulhote Y. Associations between indoor air pollution and acute respiratory infections among under-five children in Afghanistan: do SES and sex matter? Int J Environ Res Public Health. 2019;16:e2910.

    PubMed Central  CrossRef  Google Scholar 

  30. Khan KM, Weigel MM, Yonts S, Rohlman D, Armijos R. Residential exposure to urban traffic is associated with the poorer neurobehavioral health of Ecuadorian children. Neurotoxicol. 2019;73:31–9.

    Google Scholar 

  31. Patel SK, Patel S, Kumar A. Effects of cooking fuel sources on the respiratory health of children: evidence from the Annual Health Survey, Uttar Pradesh, India. Public Health. 2019;169:59–68.

    PubMed  CrossRef  Google Scholar 

  32. Winneke G. Developmental aspects of environmental neurotoxicology: lessons from lead and polychlorinated biphenyls. J Neurol Sci. 2011;308:9–15.

    CAS  PubMed  CrossRef  Google Scholar 

  33. Pembrey ME. Does cross-generational epigenetic inheritance contribute to cultural continuity? Environ Epigenet. 2018;4:1–8.

    CrossRef  Google Scholar 

  34. Slykerman RF, Thompson JM, Pryor JE, Becroft DM, Robinson E, Clark PM, Wild CJ, Mitchell EA. Maternal stress, social support and preschool children’s intelligence. Early Hum Dev. 2005;81(10):815–21. https://doi.org/10.1016/j.earlhumdev.2005.05.005.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Baldassare M. The effects of household density on subgroups. Am Sociol Rev. 1981;46(1):110–8. https://doi.org/10.2307/2095030.

    CrossRef  Google Scholar 

  36. Bartlett S. Does inadequate housing perpetuate children’s poverty? Childhood. 1998;5(4):403–20. https://doi.org/10.1177/0907568298005004004.

    CrossRef  Google Scholar 

  37. Fuller TD, Edwards JN, Sermsri S, Vorakitphokatorn S. Housing, stress, and physical Well-being - evidence from Thailand. Soc Sci Med. 1993;36(11):1417–28. https://doi.org/10.1016/0277-9536(93)90384-G.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Loo C, Ong P. Crowding perceptions, attitudes, and consequences among the Chinese. Environ Behav. 1984;16(1):55–87. https://doi.org/10.1177/0013916584161003.

    CrossRef  Google Scholar 

  39. Youssef RM, Attia MSED, Kamel ML. Children experiencing violence I: parental use of corporal punishment. Child Abuse Negl. 1998;22(10):959–73. https://doi.org/10.1016/S0145-2134(98)00077-5.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Bradley RH, Caldwell BM. The home inventory and family demographics. Dev Psychol. 1984;20(2):315–20. https://doi.org/10.1037//0012-1649.20.2.315.

    CrossRef  Google Scholar 

  41. Bradley RH, Whiteside L, Mundfrom DJ, Casey PH, Kelleher KJ, Pope SK. Early indications of resilience and their relation to experiences in the home environments of low-birth-weight, premature children living in poverty. Child Dev. 1994;65(2):346–60.

    CAS  PubMed  CrossRef  Google Scholar 

  42. Wachs TD, Camli O. Do ecological or individual characteristics mediate the influence of the physical-environment upon maternal-behavior. J Environ Psychol. 1991;11(3):249–64. https://doi.org/10.1016/S0272-4944(05)80186-0.

    CrossRef  Google Scholar 

  43. Evans GW, Bullinger M, Hygge S. Chronic noise exposure and physiological response: a prospective study of children living under environmental stress. Psychol Sci. 1998;9(1):75–7. https://doi.org/10.1111/1467-9280.00014.

    CrossRef  Google Scholar 

  44. Evans GW. Child development and the physical environment. Annu Rev Psychol. 2006;57:423–51. https://doi.org/10.1146/annurev.psych.57.102904.190057.

    CrossRef  PubMed  Google Scholar 

  45. Ruiz-Casares M, Nazif-Muñoz JI, Iwo R, Oulhote Y. Nonadult supervision of children in low- and middle-income countries: results from 61 national population-based surveys. Int J Environ Res Public Health. 2018;15:e1564.

    PubMed Central  CrossRef  Google Scholar 

  46. Gascon M, Vrijheid M, Nieuwenhuijsen MJ. The built environment and child health: an overview of current evidence. Curr Environ Health Rep. 2016;3:250–7.

    PubMed  CrossRef  Google Scholar 

  47. Foster H, Brooks-Gunn J. Children’s exposure to community and war violence and mental health in four African countries. Soc Sci Med. 2015;146:292–9.

    CrossRef  Google Scholar 

  48. Parchment TM, Small L, Osuji H, McKay M, Bhana A. Familial and contextual influences on children’s prosocial behavior: South African caregivers as adult protective shields in enhancing child mental health. Glob Soc Welf. 2016;3:1–10.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  49. Stansfeld SA, Berglund B, Clark C, Lopez-Barrio I, Fischer P, Ohrstrom E, Haines MM, et al. Aircraft and road traffic noise and children’s cognition and health: a cross-national study. Lancet. 2005;365(9475):1942–9. https://doi.org/10.1016/S0140-6736(05)66660-3.

    CAS  CrossRef  PubMed  Google Scholar 

  50. Sullivan SM, Broyles ST, Barreira TV, Chaput JP, Fogelholm M, Hu G, Kuriyan R, Kurpad A, Lambert EV, Maher C, Maia J, Matsudo V, Olds T, Onywera V, Sarmiento OL, Standage M, Tremblay MS, Tudor-Locke C, Zhao P, Katzmarzyk PT, ISCOLE Research Group. Associations of neighborhood social environment attributes and physical activity among 9-11 year old children from 12 countries. Health Place. 2017;46:183–91.

    Google Scholar 

  51. Evans GW, Gonnella C, Marcynyszyn LA, Gentile L, Salpekar N. The role of chaos in poverty and children’s socioemotional adjustment. Psychol Sci. 2005;16(7):560–5. https://doi.org/10.1111/j.0956-7976.2005.01575.x.

    CrossRef  PubMed  Google Scholar 

  52. WHO. Packages of interventions for family planning, safe abortion care, maternal, new born and child health. Geneva: World Health organization; 2010.

    Google Scholar 

  53. Senier L, Brown P, Shostak S, Hanna B. The socio-exposome: advancing exposure science and environmental justice in post-genomic era. Environ Sociol. 2017;3:107–21.

    PubMed  CrossRef  Google Scholar 

  54. Hernandez M, Collins TW, Grineski SE. Immigration, mobility, and environmental justice: a comparative study of Hispanic people’s residential decision-making and exposure to hazardous air pollutants in Greater Houston, Texas. Geoforum. 2015;60:83–94.

    CrossRef  Google Scholar 

  55. Schwartz NA, von Glascoe CA, Torres V, Ramos L, Soria-Delgado C. “Where they (live, work and) spray”: pesticide exposure, childhood asthma and environmental justice among Mexican-American farmworkers. Health Place. 2015;32:83–92.

    PubMed  CrossRef  Google Scholar 

  56. Voelkel J, Hellman D, Sakuma R, Shandas V. Assessing vulnerability to urban heat: a study of disproportionate heat exposure and access to refuge by socio-demographic status in Portland, Oregon. Int J Environ Res Public Health. 2018;15:E640.

    PubMed  CrossRef  Google Scholar 

  57. Moody H, Grady SC. Lead emissions and population vulnerability in the Detroit (Michigan, USA) Metropolitan Area, 2006-13: a spatial and temporal analysis. Int J Environ Res Public Health. 2017;14:E1445.

    PubMed  CrossRef  CAS  Google Scholar 

  58. Dowling R, Ericson B, Caravanos J, Grigsby P, Amoyaw-Osei Y. Spatial associations between contaminated land and sociodemographics in Ghana. Int J Environ Res Public Health. 2015;12:13587–601.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  59. Laurent É. Issues in environmental justice within the European Union. Ecol Econ. 2011;70:1846–53.

    CrossRef  Google Scholar 

  60. Juarez PD, Matthews-Juarez P, Hood DB, Im W, Levine RS, Kilbourne BJ, Langston MA, et al. The public health exposome: a population-based, exposure science approach to health disparities research. Int J Environ Res Public Health. 2014;11:12866–95.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  61. Golding J. Who should be studied and when in a longitudinal birth cohort? Paediatr Perinat Epidemiol. 2009;23(Supp 1):15–22.

    PubMed  CrossRef  Google Scholar 

  62. Golding J, Jones R, Bruné MN, Pronczuk J. Why carry out a longitudinal birth survey? Paediatr Perinat Epidemiol. 2009;23(Supp 1):1–14.

    PubMed  CrossRef  Google Scholar 

  63. Steer CD, Bolton P, Golding J. Preconception and prenatal environmental factors associated with communication impairments in 9 year old children using an exposome-wide approach. PLoS One. 2015;10:e0118701.

    PubMed  PubMed Central  CrossRef  CAS  Google Scholar 

  64. Cifuentes P, Reichard J, Im W, Smith S, Colen C, Giurgescu C, Williams KP, Gillespie S, Juarez PD, Hood DB. Application of the public health exposome framework to estimate phenotypes of resilience in a model of Ohio African-American women’s cohort. J Urban Health. 2019;96:57–71.

    PubMed  CrossRef  PubMed Central  Google Scholar 

  65. Golding J, Gregory S, Iles-Caven Y, Lingam R, Davis JM, Emmett P, Steer CD, Hibbeln JR. Parental, prenatal, and neonatal associations with ball skills at age 8 using an exposome approach. J Child Neurol. 2014;29:1390–8.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  66. Agier L, Basagaña X, Maitre L, Granum B, Bird PK, Casas M, Oftedal B, et al. Early-life exposome and lung function in children in Europe: an analysis of data from the longitudinal, population-based HELIX cohort. Lancet Planet Health. 2019;3:e81–92.

    PubMed  CrossRef  Google Scholar 

  67. Birmingham K. Pioneering ethics in a longitudinal study. Bristol: Policy Press; 2018.

    CrossRef  Google Scholar 

  68. Kordas K, O’Hare D, Jacobs-Pearson M. Longitudinal studies: engaged cohort good for science. Nature. 2014;516:170.

    CAS  PubMed  CrossRef  Google Scholar 

  69. Morello-Frosch R, Brody JG, Brown P, Altman RG, Rudel RA, Pérez C. Toxic ignorance and right-to-know in biomonitoring results communication: a survey of scientists and study participants. Environ Health. 2009;8:6.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  70. Ohayon JL, Cousins E, Brown P, Morello-Frosch R, Brody JG. Researcher and institutional review board perspectives on the benefits and challenges of reporting back biomonitoring and environmental exposure results. Environ Res. 2017;153:140–9.

    CAS  PubMed  CrossRef  Google Scholar 

  71. Perovich LJ, Ohayon JL, Cousins EM, Morello-Frosch R, Brown P, Adamkiewicz G, Brody JG. Reporting to parents on children’s exposures to asthma triggers in low-income and public housing, an interview-based case study of ethics, environmental literacy, individual action, and public health benefits. Environ Health. 2018;17:48.

    PubMed  PubMed Central  CrossRef  Google Scholar 

  72. Guthman J, Mansfield B. The implications of environmental epigenetics: a new direction for geographic inquiry on health, space, and nature-society relations. Prog Hum Geogr. 2012;37:486–504.

    CrossRef  Google Scholar 

Download references

Acknowledgements

Seth Frndak, a Ph.D. student at the University at Buffalo, wrote the story of Thiri. Patrick Mbullo, a Ph.D. student at Northwestern University, wrote the story of Maria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Kordas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Kordas, K., Young, S.L., Golding, J. (2020). Measuring the Lifetime Environment in LMICs: Perspectives from Epidemiology, Environmental Health, and Anthropology. In: Smith, K., Ram, P. (eds) Transforming Global Health. Springer, Cham. https://doi.org/10.1007/978-3-030-32112-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32112-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32111-6

  • Online ISBN: 978-3-030-32112-3

  • eBook Packages: MedicineMedicine (R0)