Skip to main content

Multiple Instance Classification in the Image Domain

  • Conference paper
  • First Online:
Similarity Search and Applications (SISAP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11807))

Included in the following conference series:

  • 1087 Accesses

Abstract

Multiple instance classification (MIC) is a kind of supervised learning, where data are represented as bags and each bag contains many instances. Training bags are given a label and the system tries to learn how to label unknown bags, without necessarily learning how to label individually each of their instances. In particular, we apply concepts drawn from MIC to the realm of content-based image retrieval, where images are described as bags of visual local descriptors. We introduce several classifiers, according to the different MIC paradigms, and evaluate them experimentally on a real-world dataset, comparing their accuracy and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Actually, we removed the instance from the training set if its NN in a different bag is in a different class. This was required because it could happen that the NN of an instance belongs to the same bag.

References

  1. Amato, G., Falchi, F.: kNN based image classification relying on local feature similarity. In: SISAP 2010 (2010)

    Google Scholar 

  2. Amores, J.: Multiple instance classification: review, taxonomy and comparative study. Artif. Intell. 201, 81–105 (2013)

    Article  MathSciNet  Google Scholar 

  3. Ardizzoni, S., Bartolini, I., Patella, M.: Windsurf: region-based image retrieval using wavelets. In: IWOSS 1999 (1999)

    Google Scholar 

  4. Bartolini, I., Ciaccia, P.: Imagination: exploiting link analysis for accurate image annotation. In: Boujemaa, N., Detyniecki, M., Nürnberger, A. (eds.) AMR 2007. LNCS, vol. 4918, pp. 32–44. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79860-6_3

    Chapter  Google Scholar 

  5. Bartolini, I., Ciaccia, P., Patella, M.: Adaptively browsing image databases with PIBE. MTAP 31(3), 269–286 (2006)

    Google Scholar 

  6. Bartolini, I., Patella, M.: Windsurf: the best way to SURF (and SIFT/BRISK/ORB/FREAK, too). Multimedia Syst. 24(4), 459–476 (2018)

    Article  Google Scholar 

  7. Bartolini, I., Patella, M., Stromei, G.: The windsurf library for the efficient retrieval of multimedia hierarchical data. In: SIGMAP 2011 (2011)

    Google Scholar 

  8. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. TPAMI 24(24), 509–522 (2002)

    Article  Google Scholar 

  9. Chen, Y., Bi, J., Wang, J.Z.: MILES: multiple-instance learning via embedded instance selection. TPAMI 28(12), 1931–1947 (2006)

    Article  Google Scholar 

  10. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval: ideas, influences, and trends of the new age. Comput. Surv. 40(2), 5 (2008)

    Article  Google Scholar 

  11. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental comparison. Inf. Retrieval 11(2), 77–107 (2008)

    Article  Google Scholar 

  12. Dietterich, T.G., Lathrop, R.H., Lozano-Pérez, T.: Solving the multiple instance problem with axis-parallel rectangles. Artif. Intell. 89(1–2), 31–71 (1997)

    Article  Google Scholar 

  13. Foulds, J., Frank, E.: A review of multi-instance learning assumptions. Knowl. Eng. Rev. 25(1), 1–25 (2010)

    Article  Google Scholar 

  14. Lew, M.S., Sebe, N., Djeraba, C., Jain, R.: Content-based multimedia information retrieval: state of the art and challenges. TMCCA 2(1), 1–19 (2006)

    Article  Google Scholar 

  15. Ling, H., Okada, K.: An efficient earth mover’s distance algorithm for robust histogram comparison. TPAMI 29(5), 840–853 (2007)

    Article  Google Scholar 

  16. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. IJCV 60(2), 91–110 (2004)

    Article  Google Scholar 

  17. Maron, O., Ratan, A.L.: Multiple-instance learning for natural scene classification. In: ICML 1998 (1998)

    Google Scholar 

  18. Ratan, A.L., Maron, O., Grimson, W.E.L., Lozano-Pérez, T.: A framework for learning query concepts in image classification. In: CVPR 1999 (1999)

    Google Scholar 

  19. Rubner, Y., Tomasi, C.: Perceptual Metrics for Image Database Navigation. Springer, Boston (2013). https://doi.org/10.1007/978-1-4757-3343-3

    Book  MATH  Google Scholar 

  20. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation. In: CVPR 2015 (2015)

    Google Scholar 

  21. Yang, C., Lozano-Pérez, T.: Image database retrieval with multiple-instance learning techniques. In: ICDE 2000 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Patella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartolini, I., Pascarella, P., Patella, M. (2019). Multiple Instance Classification in the Image Domain. In: Amato, G., Gennaro, C., Oria, V., Radovanović , M. (eds) Similarity Search and Applications. SISAP 2019. Lecture Notes in Computer Science(), vol 11807. Springer, Cham. https://doi.org/10.1007/978-3-030-32047-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32047-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32046-1

  • Online ISBN: 978-3-030-32047-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics