Skip to main content

Benchmark RGB-D Gait Datasets: A Systematic Review

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 34))

Abstract

Human motion analysis has proven to be a great source of information for a wide range of applications. Several approaches for a detailed and accurate motion analysis have been proposed in the literature, as well as an almost proportional number of dedicated datasets. The relatively recent arrival of depth sensors contributed to an increasing interest in this research area and also to the emergence of a new type of motion datasets. This work focuses on a systematic review of publicly available depth-based datasets, encompassing human gait data which is used for person recognition and/or classification purposes. We have conducted this systematic review using the Scopus database. The herein presented survey, which to the best of our knowledge is the first one dedicated to this type of datasets, is intended to inform and aid researchers on the selection of the most suitable datasets to develop, test and compare their algorithms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andersson, V.O., Araújo, R.M.: Person identification using anthropometric and gait data from kinect sensor. In: Proceedings of the 29th Association for the Advancement of Artificial Intelligence, pp. 425–431 (2015)

    Google Scholar 

  2. Barbosa, I.B., Cristani, M., Bue, A.D., Bazzani, L., Murino, V.: Re-identification with RGB-d sensors. In: Proceedings of the 12th international conference on Computer Vision - Volume Part I, pp. 433–442. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bloom, V., Argyriou, V., Makris, D.: Hierarchical transfer learning for online recognition of compound actions. Comput. Vis. Image Underst. 144, 62–72 (2016)

    Article  Google Scholar 

  4. Bonnechère, B., Jansen, B., Salvia, P., Bouzahouene, H., Omelina, L., Moiseev, F., Sholukha, V., Cornelis, J., Rooze, M., Jan, S.V.S.: Validity and reliability of the kinect within functional assessment activities: comparison with standard stereophotogrammetry. Gait Posture 39(1), 593–598 (2014)

    Article  Google Scholar 

  5. Borràs, R., Lapedriza, À., Igual, L.: Depth information in human gait analysis: an experimental study on gender recognition. In: Proceedings of the 9th International Conference on Image Analysis and Recognition - Volume Part II, ICIAR, pp. 98–105. Springer, Heidelberg (2012)

    Google Scholar 

  6. Bouchrika, I., Carter, J.N., Nixon, M.S.: Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras. Multimed. Tools Appl. 75(2), 1201–1221 (2016)

    Article  Google Scholar 

  7. Boulgouris, N.V., Hatzinakos, D., Plataniotis, K.N.: Gait recognition: a challenging signal processing technology for biometric identification. IEEE Signal Process. Mag. 22(6), 78–90 (2005)

    Article  Google Scholar 

  8. Chattopadhyay, P., Sural, S., Mukherjee, J.: Frontal gait recognition from occluded scenes. Pattern Recogn. Lett. 63, 9–15 (2015)

    Article  Google Scholar 

  9. Cheng, H., Liu, Z., Zhao, Y., Ye, G.: Real world activity summary for senior home monitoring. In: Proceedings of the IEEE International Conference on Multimedia and Expo, ICME, pp. 1–4 (2011)

    Google Scholar 

  10. Dobson, F., Morris, M.E., Baker, R., Graham, H.K.: Gait classification in children with cerebral palsy: a systematic review. Gait Posture 25(1), 140–152 (2007)

    Article  Google Scholar 

  11. Firman, M.: RGBD datasets: Past, present and future. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition - Workshops. IEEE (2016)

    Google Scholar 

  12. Galinska, K., Luboch, P., Kluwak, K., Bieganski, M.: A database of elementary human movements collected with RGB-d type camera. In: Proceedings of the 6th IEEE International Conference on Cognitive Infocommunications. IEEE (2015)

    Google Scholar 

  13. Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014)

    Article  Google Scholar 

  14. Gouwanda, D., Senanayake, S.M.N.A.: Emerging trends of body-mounted sensors in sports and human gait analysis. In: Proceedings of the 4th International Conference on Biomedical Engineering, pp. 715–718. Springer, Heidelberg (2008)

    Google Scholar 

  15. Gross, R., Shi, J.: The CMU motion of body (MoBo) database. Technical report CMU-RI-TR-01-18, Carnegie Mellon University, Pittsburgh, PA (2001)

    Google Scholar 

  16. Hausdorff, J.M., Rios, D.A., Edelberg, H.K.: Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch. Phys. Med. Rehabil. 82(8), 1050–1056 (2001)

    Article  CAS  Google Scholar 

  17. Hofmann, M., Geiger, J., Bachmann, S., Schuller, B., Rigoll, G.: The TUM gait from audio, image and depth (GAID) database - multimodal recognition of subjects and traits. J. Vis. Commun. Image Represent. 25(1), 195–206 (2014)

    Article  Google Scholar 

  18. Ji, X., Liu, H.: Advances in view-invariant human motion analysis: a review. IEEE Trans. Syst. Man, Cybern. Part C: Appl. Rev. 40(1), 13–24 (2010)

    Google Scholar 

  19. Kastaniotis, D., Theodorakopoulos, I., Economou, G., Fotopoulos, S.: Gait-based gender recognition using pose information for real time applications. In: Proceedings of the 18th International Conference on Digital Signal Processing. IEEE (2013)

    Google Scholar 

  20. Kwolek, B., Kepski, M.: Improving fall detection by the use of depth sensor and accelerometer. Neurocomputing 168, 637–645 (2015)

    Article  Google Scholar 

  21. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)

    Article  Google Scholar 

  22. Nixon, M.S., Tan, T., Chellappa, R.: Human Identification Based on Gait. Springer, US (2006)

    Book  Google Scholar 

  23. Nunes, J.F., Moreira, P.M., Tavares, J.M.R.S.: Human motion analysis and simulation tools: a survey. In: Miranda, F., Abreu, C. (eds.) Handbook of Research on Computational Simulation and Modeling in Engineering, pp. 359–388. IGI Global, Hershey (2016)

    Chapter  Google Scholar 

  24. Nunes, J.F., Moreira, P.M., Tavares, J.M.R.S.: GRIDDS - a gait recognition image and depth dataset. In: VipIMAGE 2019/VII ECCOMAS Thematic Conference on Computational Vision and Medical Image Processing (2019)

    Google Scholar 

  25. Phillips, P.J., Sarkar, S., Vega, I.R., Grother, P.J., Bowyer, K.W.: The gait identification challenge problem: data sets and baseline algorithm. In: Proceedings of the 16th International Conference on Pattern Recognition. IEEE (2002)

    Google Scholar 

  26. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Gait energy volumes and frontal gait recognition using depth images. In: Proceedings of the International Joint Conference on Biometrics, pp. 1–6 (2011)

    Google Scholar 

  27. Stasi, S.L.D., Logerstedt, D., Gardinier, E.S., Snyder-Mackler, L.: Gait patterns differ between ACL-reconstructed athletes who pass return-to-sport criteria and those who fail. Am. J. Sports Med. 41(6), 1310–1318 (2013)

    Article  Google Scholar 

  28. Vasconcelos, M.J.M., Tavares, J.M.R.S.: Human motion analysis: methodologies and applications. In: Proceedings of the 8th International Symposium on Computer Methods in Biomechanics and Biomedical Engineering. CMBBE (2008)

    Google Scholar 

  29. Vernon, S., Paterson, K., Bower, K., McGinley, J., Miller, K., Pua, Y.H., Clark, R.A.: Quantifying individual components of the timed up and go using the kinect in people living with stroke. Neurorehabil. Neural Repair 29(1), 48–53 (2014)

    Article  Google Scholar 

  30. Wang, J., She, M., Nahavandi, S., Kouzani, A.: A review of vision-based gait recognition methods for human identification. In: Proceedings of the International Conference on Digital Image Computing: Techniques and Applications, DICTA, pp. 320–327. IEEE (2010)

    Google Scholar 

  31. Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis. Pattern Recogn. 36(3), 585–601 (2003)

    Article  Google Scholar 

  32. Wang, Y., Sun, J., Li, J., Zhao, D.: Gait recognition based on 3D skeleton joints captured by kinect. In: Proceedings of the IEEE International Conference on Image Processing, ICIP, pp. 3151–3155. IEEE (2016)

    Google Scholar 

  33. Webster, D., Celik, O.: Systematic review of kinect applications in elderly care and stroke rehabilitation. J. Neuroeng. Rehabil. 11(1), 108 (2014)

    Article  Google Scholar 

  34. Yu, S., Wang, Q., Huang, Y.: A large RGB-D gait dataset and the baseline algorithm. In: Biometric Recognition, pp. 417–424. Springer (2013)

    Google Scholar 

  35. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimed. 19(2), 4–10 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Ferreira Nunes .

Editor information

Editors and Affiliations

A Datasets’ URLs

A Datasets’ URLs

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nunes, J.F., Moreira, P.M., Tavares, J.M.R.S. (2019). Benchmark RGB-D Gait Datasets: A Systematic Review. In: Tavares, J., Natal Jorge, R. (eds) VipIMAGE 2019. VipIMAGE 2019. Lecture Notes in Computational Vision and Biomechanics, vol 34. Springer, Cham. https://doi.org/10.1007/978-3-030-32040-9_38

Download citation

Publish with us

Policies and ethics