Skip to main content

Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications

  • Chapter
  • First Online:
Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

Carbon nanomaterials (CNs) combine the stability, good biocompatibility, and mechanical strength of carbonaceous materials with the unique electronic properties of reduced size particles. The electronic transitions of CNs can occur in a wide range, from the UV–Vis to the near infrared region (NIR) with the latter being especially promising for biomedical applications. This is due to deeper tissue penetration and reduced light scattering from the background and surroundings. Among all the NIR-emitting CNs, carbon nanotubes (CNTs), graphene dots (GDs), and carbon dots (CDs) have gained significant attention in recent years. This chapter focuses on the synthesis of NIR-emitting carbon nanomaterials, their versatile physical, chemical, and optical properties, as well as their development and integration in biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirsch A (2010) The era of carbon allotropes. Nat Mater 9:868–871

    Article  CAS  Google Scholar 

  2. Georgakilas V, Perman JA, Tucek J, Zboril R (2015) Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem Rev 115:4744–4822

    Article  CAS  Google Scholar 

  3. Reineck P, Gibson BC (2017) Near-infrared fluorescent nanomaterials for bioimaging and sensing. Adv Opt Mater 5

    Google Scholar 

  4. Kozák O et al (2016) Photoluminescent carbon nanostructures. Chem Mater 28:4085–4128

    Article  CAS  Google Scholar 

  5. Feng L-L et al (2017) Near infrared graphene quantum dots-based two-photon nanoprobe for direct bioimaging of endogenous ascorbic acid in living cells. Anal Chem 89:4077–4084

    Article  CAS  Google Scholar 

  6. Liu H, Zhang L, Yan M, Yu J (2017) Carbon nanostructures in biology and medicine. J Mater Chem B 5:6437–6450

    Article  CAS  Google Scholar 

  7. Sajid MI et al (2016) Carbon nanotubes from synthesis to in vivo biomedical applications. Int J Pharm 501:278–299

    Article  CAS  Google Scholar 

  8. Akbari E et al (2014) An analytical model and ANN simulation for carbon nanotube based ammonium gas sensors. RSC Adv 4:36896–36904

    Article  CAS  Google Scholar 

  9. Wang F, Dukovic G, Brus LE, Heinz TF (2004) Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys Rev Lett 92:177401

    Article  CAS  Google Scholar 

  10. Farrera C, Torres Andón F, Feliu N (2017) Carbon nanotubes as optical sensors in biomedicine. ACS Nano 11:10637–10643

    Article  CAS  Google Scholar 

  11. Ruoff RS, Lorents DC (1995) Mechanical and thermal properties of carbon nanotubes. Carbon N Y 33:925–930

    Article  CAS  Google Scholar 

  12. Wildöer JWG, Venema LC, Rinzler AG, Smalley RE, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62

    Article  Google Scholar 

  13. Monaco AM, Giugliano M (2014) Carbon-based smart nanomaterials in biomedicine and neuroengineering. Beilstein J Nanotechnol 5:1849–1863

    Article  CAS  Google Scholar 

  14. Yang W et al (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angew Chemie – Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  15. Chandra S et al (2012) Tuning of photoluminescence on different surface functionalized carbon quantum dots. RSC Adv 2:3602

    Article  CAS  Google Scholar 

  16. Dhenadhayalan N, Lin K-C, Suresh R, Ramamurthy P (2016) Unravelling the multiple emissive states in citric-acid-derived carbon dots. J Phys Chem C 120:1252–1261

    Article  CAS  Google Scholar 

  17. Dong Y et al (2012) Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon N Y 50:4738–4743

    Article  CAS  Google Scholar 

  18. Sharma V, Tiwari P, Mobin SM (2017) Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 5:8904–8924

    Article  CAS  Google Scholar 

  19. Hsu PC, Shih ZY, Lee CH, Chang HT (2012) Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem 14:917–920

    Article  CAS  Google Scholar 

  20. Wei J et al (2013) Simple one-step synthesis of water-soluble fluorescent carbon dots derived from paper ash. RSC Adv 3:13119

    Article  CAS  Google Scholar 

  21. Lim SY, Shen W, Gao Z (2014) Carbon quantum dots and their applications. Chem Soc Rev 44:362–381

    Article  Google Scholar 

  22. Baker SN, Baker GA (2010) Luminescent carbon nanodots: emergent nanolights. Angew Chemie Int Ed 49:6726–6744

    Article  CAS  Google Scholar 

  23. Demchenko AP, Dekaliuk MO (2013) Novel fluorescent carbonic nanomaterials for sensing and imaging. Methods Appl Fluoresc 1:042001

    Article  CAS  Google Scholar 

  24. Emam AN, Loutfy SA, Mostafa AA, Awad H, Mohamed MB (2017) Cyto-toxicity, biocompatibility and cellular response of carbon dots–plasmonic based nano-hybrids for bioimaging. RSC Adv 7:23502–23514

    Article  CAS  Google Scholar 

  25. Yang S-T et al (2009) Carbon dots for optical imaging in vivo. J Am Chem Soc 131:11308–11309

    Article  CAS  Google Scholar 

  26. Hu R, Li L, Jin WJ (2017) Controlling speciation of nitrogen in nitrogen-doped carbon dots by ferric ion catalysis for enhancing fluorescence. Carbon N Y 111:133–141

    Article  CAS  Google Scholar 

  27. Chen Y et al (2018) Concentration-induced multi-colored emissions in carbon dots: origination from triple fluorescent centers. Nanoscale 10:6734–6743

    Article  CAS  Google Scholar 

  28. Guo L et al (2016) Tunable multicolor carbon dots prepared from well-defined polythiophene derivatives and their emission mechanism. Nanoscale 8:729–734

    Article  CAS  Google Scholar 

  29. Gan Z, Xu H, Hao Y (2016) Mechanism for excitation-dependent photoluminescence from graphene quantum dots and other graphene oxide derivates: consensus, debates and challenges. Nanoscale 8:7794–7807

    Article  CAS  Google Scholar 

  30. Yuan F et al (2017) Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv Mater 29

    Google Scholar 

  31. Li H et al (2010) Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew Chemie – Int Ed 49:4430–4434

    Article  CAS  Google Scholar 

  32. Yuan F et al (2016) Shining carbon dots: synthesis and biomedical and optoelectronic applications. Nano Today 11:565–586

    Article  CAS  Google Scholar 

  33. Ding H, Yu S-B, Wei J-S, Xiong H-M (2016) Full-color light-emitting carbon dots with a surface-state-controlled luminescence mechanism. ACS Nano 10:484–491

    Article  CAS  Google Scholar 

  34. Wang Y, Hu A (2014) Carbon quantum dots: synthesis, properties and applications. J Mater Chem C 2:6921

    Article  CAS  Google Scholar 

  35. Bao L, Liu C, Zhang Z-L, Pang D-W (2015) Photoluminescence-tunable carbon nanodots: surface-state energy-gap tuning. Adv Mater 27:1663–1667

    Article  CAS  Google Scholar 

  36. Li X, Zhang S, Kulinich SA, Liu Y, Zeng H (2015) Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 4:4976

    Article  CAS  Google Scholar 

  37. Sun YP et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757

    Article  CAS  Google Scholar 

  38. Dimos K (2016) Carbon quantum dots: surface passivation and functionalization. Curr Org Chem 20:682–695

    Article  CAS  Google Scholar 

  39. Sachdev A, Matai I, Gopinath P (2014) Implications of surface passivation on physicochemical and bioimaging properties of carbon dots. RSC Adv 4:20915–20921

    Article  CAS  Google Scholar 

  40. Li L et al (2013) Focusing on luminescent graphene quantum dots: current status and future perspectives. Nanoscale 5:4015

    Article  CAS  Google Scholar 

  41. Zhou X et al (2012) Photo-Fenton reaction of graphene oxide: a new strategy to prepare Graphene quantum dots for DNA cleavage. ACS Nano 6:6592–6599

    Article  CAS  Google Scholar 

  42. Sun H, Wu L, Wei W, Qu X (2013) Recent advances in graphene quantum dots for sensing. Mater Today 16:433–442

    Article  CAS  Google Scholar 

  43. Rajender G, Giri PK (2016) Formation mechanism of graphene quantum dots and their edge state conversion probed by photoluminescence and Raman spectroscopy. J Mater Chem C 4:10852–10865

    Article  CAS  Google Scholar 

  44. Wang Z, Zeng H, Sun L (2015) Graphene quantum dots: versatile photoluminescence for energy, biomedical, and environmental applications. J Mater Chem C 3:1157–1165

    Article  CAS  Google Scholar 

  45. Journal AI, Kittiratanawasin L, Hannongbua S (2016) The effect of edges and shapes on band gap energy in graphene quantum dots. Integr Ferroelectr 175:211–219

    Article  CAS  Google Scholar 

  46. Choi S-H (2017) Unique properties of graphene quantum dots and their applications in photonic/electronic devices. J Phys D Appl Phys 50:103002

    Article  CAS  Google Scholar 

  47. Zhang R et al (2015) Size and refinement edge-shape effects of graphene quantum dots on UV – visible absorption. J Alloys Compd 623:186–191

    Article  CAS  Google Scholar 

  48. Eda G et al (2010) Blue photoluminescence from chemically derived graphene oxide. Adv Mater 22:505–509

    Article  CAS  Google Scholar 

  49. Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P (2014) Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2:6954–6960

    Article  CAS  Google Scholar 

  50. Zhu S et al (2017) Nano today photoluminescence mechanism in graphene quantum dots: quantum confinement effect and surface / edge state. Nano Today 13:10–14

    Article  CAS  Google Scholar 

  51. Pang J et al (2016) CVD growth of 1D and 2D sp2 carbon nanomaterials. J Mater Sci 51:640–667

    Article  CAS  Google Scholar 

  52. Zahid MU, Pervaiz E, Hussain A, Shahzad MI, Niazi MBK (2018) Synthesis of carbon nanomaterials from different pyrolysis techniques: a review. Mater Res Express 5:052002

    Article  CAS  Google Scholar 

  53. Zhu H et al (2009) Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun 7:5118

    Article  CAS  Google Scholar 

  54. Ohta K et al (2014) Synthesis of carbon nanotubes by microwave heating: influence of diameter of catalytic Ni nanoparticles on diameter of CNTs. J Mater Chem A 2:2773–2780

    Article  CAS  Google Scholar 

  55. Shi K, Yan J, Lester E, Wu T (2014) Catalyst-free synthesis of multiwalled carbon nanotubes via microwave-induced processing of biomass. Ind Eng Chem Res 53:15012–15019

    Article  CAS  Google Scholar 

  56. Kokorina AA, Prikhozhdenko ES, Sukhorukov GB, Sapelkin AV, Goryacheva IY (2017) Luminescent carbon nanoparticles: synthesis, methods of investigation, applications. Russ Chem Rev 86

    Google Scholar 

  57. Hou P, Liu C, Cheng H (2008) Purification of carbon nanotubes. Carbon N Y 46:2003–2025

    Article  CAS  Google Scholar 

  58. Chiang IW, Brinson BE, Smalley RE, Margrave JL, Hauge RH (2001) Purification and characterization of single-wall carbon nanotubes. J Phys Chem B 105:1157–1161

    Article  CAS  Google Scholar 

  59. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  60. Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes – a review. J Encapsulation Adsorpt Sci 1:29–34

    Article  CAS  Google Scholar 

  61. Joselevich E, Dai H, Liu J, Hata K, Windle AH (2008) Carbon nanotube synthesis and organization. Organization 164:101–164

    Google Scholar 

  62. Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diam Relat Mater 50:135–150

    Article  CAS  Google Scholar 

  63. Huang Z, Ling Z, Guangming H, Rongsheng S (1998) Synthesis of various forms of carbon nanotubes by AC arc discharge. Carbon N Y 36:259–261

    Article  Google Scholar 

  64. Mubarak NM, Abdullah EC, Jayakumar NS, Sahu JN (2014) An overview on methods for the production of carbon nanotubes. J Ind Eng Chem 20:1186–1197

    Article  CAS  Google Scholar 

  65. Guo T, Nikolaev P, Thess A, Colbert DT, Smalley RE (1995) Catalytic growth of single-walled nanotubes by laser vaporization. Chem Phys Lett 243:49–54

    Article  CAS  Google Scholar 

  66. Kruusenberg I et al (2011) Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution. Carbon N Y 49:4031–4039

    Article  CAS  Google Scholar 

  67. Prasek J et al (2011) Methods for carbon nanotubes synthesis – review. J Mater Chem 21:15872–15884

    Article  CAS  Google Scholar 

  68. See CH, Harris AT (2007) A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Ind Eng Chem Res 46:997–1012

    Article  CAS  Google Scholar 

  69. Szabó A et al (2010) Synthesis methods of carbon nanotubes and related materials. Materials (Basel) 3:3092–3140

    Article  CAS  Google Scholar 

  70. Zhou D, Chow L (2003) Complex structure of carbon nanotubes and their implications for formation mechanism. J Appl Phys 93:9972–9976

    Article  CAS  Google Scholar 

  71. Ugarte D (1994) High-temperature behaviour of “fullerene black”. Carbon N Y 32:1245–1248

    Article  CAS  Google Scholar 

  72. Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52:2083–2089

    Article  CAS  Google Scholar 

  73. Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A 580:573–580

    Article  Google Scholar 

  74. Gorbunov AA, Graff A, Jost O, Pompe W (2001) Mechanism of carbon nanotube synthesis by laser ablation. In: Libenson, M. N., pp 212–217

    Google Scholar 

  75. Das R, Shahnavaz Z, Ali ME, Islam MM, Abd Hamid SB (2016) Can we optimize arc discharge and laser ablation for well-controlled carbon nanotube synthesis? Nanoscale Res Lett 11:510 https://doi.org/10.1186/s11671-016-1730-0

    Article  CAS  Google Scholar 

  76. Akizuki N, Aota S, Mouri S, Matsuda K, Miyauchi Y (2015) Efficient near-infrared up-conversion photoluminescence in carbon nanotubes. Nat Commun 6:1–6

    Article  CAS  Google Scholar 

  77. Jena PV, Galassi TV, Roxbury D, Heller DA (2017) Progress toward applications of carbon nanotube photoluminescence. ECS J Solid State Sci Technol 6:M3075–M3077

    Article  CAS  Google Scholar 

  78. Wang F (2011) The optical resonances in carbon. Science 80:838–841

    Google Scholar 

  79. Chiu CF, Saidi WA, Kagan VE, Star A (2017) Defect-induced near-infrared photoluminescence of single-walled carbon nanotubes treated with polyunsaturated fatty acids. J Am Chem Soc 139:4859–4865

    Article  CAS  Google Scholar 

  80. Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB (2010) Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330:1656–1660

    Article  CAS  Google Scholar 

  81. Piao Y et al (2013) Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects. Nat Chem 5:840–845

    Article  CAS  Google Scholar 

  82. Xu X et al (2004) Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc 126:12736–12737

    Article  CAS  Google Scholar 

  83. Yang ST et al (2009) Carbon dots as nontoxic and high-performance fluorescence imaging agents. J Phys Chem C 113:18110–18114

    Article  CAS  Google Scholar 

  84. Qiao ZA et al (2010) Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 46:8812–8814

    Article  CAS  Google Scholar 

  85. Lu J et al (2009) One-pot synthesis of fluorescent carbon graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375

    Article  CAS  Google Scholar 

  86. Li H et al (2012) Carbon quantum dots/Cu2O composites with protruding nanostructures and their highly efficient (near) infrared photocatalytic behavior. J Mater Chem 22:17470–17475

    Article  CAS  Google Scholar 

  87. Ma CB et al (2015) A general solid-state synthesis of chemically-doped fluorescent graphene quantum dots for bioimaging and optoelectronic applications. Nanoscale 7:10162–10169

    Article  CAS  Google Scholar 

  88. Wang R, Lu K-Q, Tang Z-R, Xu Y-J (2017) Recent progress in carbon quantum dots: synthesis, properties and applications in photocatalysis. J Mater Chem A 5:3717–3734

    Article  CAS  Google Scholar 

  89. Bottini M et al (2006) Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B 110:831–836

    Article  CAS  Google Scholar 

  90. Zuo P, Lu X, Sun Z, Guo Y, He H (2016) A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots. Microchim Acta 183:519–542

    Article  CAS  Google Scholar 

  91. Castro HPS et al (2016) Synthesis and characterisation of fluorescent carbon Nanodots produced in ionic liquids by laser ablation. Chem – A Eur J 22:138–143

    Article  CAS  Google Scholar 

  92. Reyes D et al (2016) Laser ablated carbon nanodots for light emission. Nanoscale Res Lett 11:424

    Article  CAS  Google Scholar 

  93. Nguyen V, Yan L, Si J (2016) Synthesis of broad photoluminescence carbon nanodots by femtosecond laser ablation in liquid. In: 2016 IEEE 16th international conference on nanotechnology (IEEE-NANO) 901–903, IEEE

    Google Scholar 

  94. Calabro RL, Yang D, Kim DY (2018) Journal of colloid and Interface science liquid-phase laser ablation synthesis of graphene quantum dots from carbon nano-onions: comparison with chemical oxidation. J Colloid Interface Sci 527:132–140

    Article  CAS  Google Scholar 

  95. Li H, Kang Z, Liu Y, Lee S (2012) Carbon nanodots: synthesis, properties and applications. J Mater Chem 22:24230

    Article  CAS  Google Scholar 

  96. Suda Y (2002) Preparation of carbon nanoparticles by plasma-assisted pulsed laser deposition method—size and binding energy dependence on ambient gas pressure and plasma condition. Thin Solid Films 415:15–20

    Article  CAS  Google Scholar 

  97. Wang Y, Zhu Y, Yu S, Jiang C (2017) Fluorescent carbon dots: rational synthesis, tunable optical properties and analytical applications. RSC Adv 7:40973–40989

    Article  CAS  Google Scholar 

  98. Hu S et al (2009) One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J Mater Chem 19:484–488

    Article  CAS  Google Scholar 

  99. Lan M et al (2017) Two-photon-excited near-infrared emissive carbon dots as multifunctional agents for fluorescence imaging and photothermal therapy. Nano Res 10:3113–3123

    Article  CAS  Google Scholar 

  100. Li H et al (2013) Near-infrared light controlled photocatalytic activity of carbon quantum dots for highly selective oxidation reaction. Nanoscale 5:3289

    Article  CAS  Google Scholar 

  101. Iannazzo D, Ziccarelli I, Pistone A (2017) Graphene quantum dots: multifunctional nanoplatforms for anticancer therapy. J Mater Chem B 5:6471–6489

    Article  CAS  Google Scholar 

  102. Russo P et al (2016) Single-step synthesis of graphene quantum dots by femtosecond laser ablation of graphene oxide dispersions. Nanoscale 8:8863–8877

    Article  CAS  Google Scholar 

  103. Lin TN et al (2015) Laser-ablation production of graphene oxide nanostructures: from ribbons to quantum dots. Nanoscale 7:2708–2715

    Article  CAS  Google Scholar 

  104. Zhou S, Xu H, Gan W, Yuan Q (2016) Graphene quantum dots: recent progress in preparation and fluorescence sensing applications. RSC Adv 6:110775–110788

    Article  CAS  Google Scholar 

  105. Sun Y et al (2013) Large scale preparation of graphene quantum dots from graphite with tunable fluorescence properties. Phys Chem Chem Phys 15:9907

    Article  CAS  Google Scholar 

  106. Zheng XT, Ananthanarayanan A, Luo KQ, Chen P (2015) Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11:1620–1636

    Article  CAS  Google Scholar 

  107. Su M, Zheng B, Liu J (2000) A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem Phys Lett 322:321–326

    Article  CAS  Google Scholar 

  108. Mubarak NM, Yusof F, Alkhatib MF (2011) The production of carbon nanotubes using two-stage chemical vapor deposition and their potential use in protein purification. Chem Eng J 168:461–469

    Article  CAS  Google Scholar 

  109. Zhao N, He C, Jiang Z, Li J, Li Y (2006) Fabrication and growth mechanism of carbon nanotubes by catalytic chemical vapor deposition. Mater Lett 60:159–163

    Article  CAS  Google Scholar 

  110. Koziol K, Boskovic BO, Yahya N (2010) Synthesis of carbon nanostructures by CVD method. Carbon 77:23–49

    Google Scholar 

  111. Corrias M et al (2003) Carbon nanotubes produced by fluidized bed catalytic CVD: first approach of the process. Chem Eng Sci 58:4475–4482

    Article  CAS  Google Scholar 

  112. Li YL et al (2004) Synthesis of single-walled carbon nanotubes by a fluidized-bed method. Chem Phys Lett 384:98–102

    Article  CAS  Google Scholar 

  113. Hiraoka T, Bandow S, Shinohara H, Iijima S (2006) Control on the diameter of single-walled carbon nanotubes by changing the pressure in floating catalyst CVD. Carbon N Y 44:1853–1859

    Article  CAS  Google Scholar 

  114. Tay B, Sheeja D, Lau S, Guo J (2003) Study of surface energy of tetrahedral amorphous carbon films modified in various gas plasma. Diam Relat Mater 12:2072–2076

    Article  CAS  Google Scholar 

  115. Lin CH, Lee SH, Hsu CM, Kuo CT (2004) Comparisons on properties and growth mechanisms of carbon nanotubes fabricated by high-pressure and low-pressure plasma-enhanced chemical vapor deposition. Diam Relat Mater 13:2147–2151

    Article  CAS  Google Scholar 

  116. Yan L et al (2016) Synthesis of carbon quantum dots by chemical vapor deposition approach for use in polymer solar cell as the electrode buffer layer. Carbon N Y 109:598–607

    Article  CAS  Google Scholar 

  117. Kumar S, Aziz ST, Girshevitz O, Nessim GD (2018) One-step synthesis of N-doped Graphene quantum dots from chitosan as a sole precursor using chemical vapor deposition. J Phys Chem C 122:2343–2349

    Article  CAS  Google Scholar 

  118. Fan L et al (2013) Direct synthesis of graphene quantum dots by chemical vapor deposition. Part Part Syst Charact 30:764–769

    Article  CAS  Google Scholar 

  119. Kukovitsky EF, L’vov SG, Sainov N a, Shustov V a, Chernozatonskii LA (2002) Correlation between metal catalyst particle size and carbon nanotube growth. Chem Phys Lett 355:497–503

    Article  CAS  Google Scholar 

  120. Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141

    Article  CAS  Google Scholar 

  121. Nüchter M, Müller U, Ondruschka B, Tied A, Lautenschläger W (2003) Microwave-assisted chemical reactions. Chem Eng Technol 26:1207–1216

    Article  CAS  Google Scholar 

  122. López C et al (2015) Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. Talanta 132:845–850

    Article  CAS  Google Scholar 

  123. Liu Y et al (2014) One-step microwave-assisted polyol synthesis of green luminescent carbon dots as optical nanoprobes. Carbon N Y 68:258–264

    Article  CAS  Google Scholar 

  124. Pan L, Sun S, Zhang L, Jiang K, Lin H (2016) Near-infrared emissive carbon dots for two-photon fluorescence bioimaging. Nanoscale 8:17350–17356

    Article  CAS  Google Scholar 

  125. Li D et al (2018) Near-infrared excitation/emission and multiphoton-induced fluorescence of carbon dots. Adv Mater 30:1–8

    Google Scholar 

  126. Li K et al (2017) Technical synthesis and biomedical applications of graphene quantum dots. J Mater Chem B 5:4811–4826

    Article  CAS  Google Scholar 

  127. Lin L et al (2014) Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications. TrAC – Trends Anal Chem 54:83–102

    Article  CAS  Google Scholar 

  128. Tetsuka H et al (2012) Optically tunable amino-functionalized graphene quantum dots. Adv Mater 24:5333–5338

    Article  CAS  Google Scholar 

  129. Bacon M, Bradley SJ, Nann T (2014) Graphene quantum dots. Part Part Syst Charact 31:415–428

    Article  CAS  Google Scholar 

  130. Shen J, Zhu Y, Yang X, Li C (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686

    Article  CAS  Google Scholar 

  131. Zhao P et al (2018) Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdiscip Rev Nanomed Nanobiotechnol 10:e1483

    Article  Google Scholar 

  132. Li X, Zhang S, Kulinich SA, Liu Y, Zeng H (2015) Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 4:4976

    Article  CAS  Google Scholar 

  133. Zhang L, Wang E (2014) Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today 9:132–157

    Article  CAS  Google Scholar 

  134. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775

    Article  CAS  Google Scholar 

  135. Say JM et al (2011) Luminescent nanodiamonds for biomedical applications. Biophys Rev 3:171–184

    Article  CAS  Google Scholar 

  136. Chen M, Yin M (2014) Design and development of fluorescent nanostructures for bioimaging. Prog Polym Sci 39:365–395

    Article  CAS  Google Scholar 

  137. Wall KP, Dillon R, Knowles MK (2015) Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course. Biochem Mol Biol Educ 43:52–59

    Article  CAS  Google Scholar 

  138. Cherukuri P, Bachilo SM, Litovsky SH, Weisman RB (2004) Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J Am Chem Soc 126:15638–15639

    Article  CAS  Google Scholar 

  139. Hong G et al (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photonics 8:723–730

    Article  CAS  Google Scholar 

  140. Welsher K, Sherlock SP, Dai H (2011) Deep-tissue anatomical imaging of mice using carbon nanotube fluorophores in the second near-infrared window. Proc Natl Acad Sci 108:8943–8948

    Article  Google Scholar 

  141. Yudasaka M et al (2017) Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep 7:44760

    Article  CAS  Google Scholar 

  142. Song Y, Zhu S, Yang B (2014) Bioimaging based on fluorescent carbon dots. RSC Adv 4:27184

    Article  CAS  Google Scholar 

  143. Nurunnabi M, Khatun Z, Reeck GR, Lee DY, Lee Y (2013) Near infra-red photoluminescent graphene nanoparticles greatly expand their use in noninvasive biomedical imaging. Chem Commun 49:5079

    Article  CAS  Google Scholar 

  144. Zhu S et al (2011) Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun 47:6858

    Article  CAS  Google Scholar 

  145. Kim J-H et al (2010) A luciferase/single-walled carbon nanotube conjugate for near-infrared fluorescent detection of cellular ATP. Angew Chemie Int Ed 49:1456–1459

    Article  CAS  Google Scholar 

  146. Li YH, Zhang L, Huang J, Liang RP, Qiu JD (2013) Fluorescent graphene quantum dots with a boronic acid appended bipyridinium salt to sense monosaccharides in aqueous solution. Chem Commun 49:5180–5182

    Article  CAS  Google Scholar 

  147. Bardhan NM (2017) 30 years of advances in functionalization of carbon nanomaterials for biomedical applications: a practical review. J Mater Res 32:107–127

    Article  CAS  Google Scholar 

  148. Malik MA, Wani MY, Hashim MA, Nabi F (2011) Nanotoxicity: dimensional and morphological concerns. Adv Phys Chem 2011:15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafik Naccache .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Medeiros, T.V., Naccache, R. (2020). Near Infrared-Emitting Carbon Nanomaterials for Biomedical Applications. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_7

Download citation

Publish with us

Policies and ethics