Skip to main content

Surface Modification of Near Infrared-Emitting Nanoparticles for Biomedical Applications

  • Chapter
  • First Online:

Abstract

A critical look at the currently known methods for surface modification and functionalization of near infrared-emitting nanoparticles for biomedical applications is presented. Hereby the general principles of surface modification are briefly explained, advantages and disadvantages of the strategies are discussed, and selected examples for respective applications are reviewed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lingeshwar Reddy K, Balaji R, Kumar A, Krishnan V (2018) Lanthanide doped near infrared active upconversion nanophosphors: fundamental concepts, synthesis strategies, and technological applications. Small 26:1801304

    Article  CAS  Google Scholar 

  2. Xu J, Gulzar A, Yang P, Bi H, Yang D, Gai S, He F, Lin J, Xing B, Jin D (2019) Recent advances in near-infrared emitting lanthanide-doped nanoconstructs: mechanism, design and application for bioimaging. Coord Chem Rev 381:104–134

    Article  CAS  Google Scholar 

  3. Jalani G, Tam V, Vetrone F, Cerruti M (2018) Seeing, targeting and delivering with upconverting nanoparticles. J Am Chem Soc 140(35):10923–10931

    Article  CAS  Google Scholar 

  4. Zheng W, Huang P, Tu D, Ma E, Zhu H, Chen X (2015) Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. Chem Soc Rev 44(6):1379–1415

    Article  CAS  Google Scholar 

  5. Zhou JC, Yang ZL, Dong W, Tang RJ, Sun LD, Yan CH (2011) Bioimaging and toxicity assessments of near-infrared upconversion luminescent NaYF4:Yb,Tm nanocrystals. Biomaterials 32(34):9059–9067

    Article  CAS  Google Scholar 

  6. Qian HS, Guo HC, Ho PC, Mahendran R, Zhang Y (2009) Mesoporous-Silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small 5(20):2285–2290

    Article  CAS  Google Scholar 

  7. Buchner M, García Calavia P, Muhr V, Kröninger A, Baeumner AJ, Hirsch T, Russell DA, Marín MJ (2018) Photosensitiser functionalised luminescent upconverting nanoparticles for efficient photodynamic therapy of breast cancer cells. Photochem Photobiol Sci 110:2795

    Google Scholar 

  8. Liu J, Bu W, Pan L, Shi J (2013) NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angewandte Chemie Int Ed 125(16):4471–4475

    Article  Google Scholar 

  9. Shen J, Zhao L, Han G (2013) Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv Drug Deliv Rev 65(5):744–755

    Article  CAS  Google Scholar 

  10. Jalani G, Tam V, Vetrone F, Cerruti M (2018) Seeing, targeting and delivering with upconverting nanoparticles. J Am Chem Soc 140(35):10923–10931

    Article  CAS  Google Scholar 

  11. Prodi L, Rampazzo E, Rastrelli F, Speghini A, Zaccheroni N (2015) Imaging agents based on lanthanide doped nanoparticles. Chem Soc Rev 44(14):4922–4952

    Article  CAS  Google Scholar 

  12. Xu S, Huang S, He Q, Wang L (2015) Upconversion nanophosphores for bioimaging. TrAC Trends Anal Chem 66:72–79

    Article  CAS  Google Scholar 

  13. Dong H, Du SR, Zheng XY, Lyu GM, Sun LD, Li LD, Zhang PZ, Zhang C, Yan CH (2015) Lanthanide nanoparticles: from design toward bioimaging and therapy. Chem Rev 115(19):10725–10815

    Article  CAS  Google Scholar 

  14. Quintanilla M, Benayas A, Naccache R, Vetrone F (2015) Luminescent nanothermometry with lanthanide-doped nanoparticles. In: Thermometry at the nanoscale. The Royal Society of Chemistry, Oxfordshire, pp 124–166

    Chapter  Google Scholar 

  15. Gorris HH, Resch-Genger U (2017) Perspectives and challenges of photon-upconversion nanoparticles-part II: bioanalytical applications. Anal Bioanal Chem 409(25):5875–5890

    Article  CAS  Google Scholar 

  16. Zhang Z, Shikha S, Liu J, Zhang J, Mei Q, Zhang Y (2018) Upconversion nanoprobes: recent advances in sensing applications. Anal Chem

    Google Scholar 

  17. Arppe R, Näreoja T, Nylund S, Mattsson L, Koho S, Rosenholm JM, Soukka T, Schäferling M (2014) Photon upconversion sensitized nanoprobes for sensing and imaging of pH. Nanoscale 6(12):6837–6843

    Article  CAS  Google Scholar 

  18. Achatz DE, Meier RJ, Fischer LH, Wolfbeis OS (2011) Luminescent sensing of oxygen using a quenchable probe and upconverting nanoparticles. Angewandte Chemie Int Ed 123(1):274–277

    Article  Google Scholar 

  19. Wang M, Hou W, Mi CC, Wang WX, Xu ZR, Teng HH, Mao CB, Xu SK (2009) Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb,Er upconversion fluorescent nanoparticles and gold nanoparticles. Anal Chem 81(21):8783–8789

    Article  CAS  Google Scholar 

  20. Chen G, Qiu H, Prasad PN, Chen X (2014) Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem Rev 114:5161–5214

    Article  CAS  Google Scholar 

  21. Wisser MD, Fischer S, Siefe C, Alivisatos AP, Salleo A, Dionne JA (2018) Improving quantum yield of Upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett 18(4):2689–2695

    Article  CAS  Google Scholar 

  22. Wiesholler LM, Hirsch T (2018) Strategies for the design of bright upconversion nanoparticles for bioanalytical applications. Opt Mater 80:253–264

    Article  CAS  Google Scholar 

  23. Homann C, Krukewitt L, Frenzel F, Grauel B, Würth C, Resch-Genger U, Haase M (2018) NaYF4:Yb,Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum yield. Angewandte Chemie Int Ed 57:8765–8769

    Article  CAS  Google Scholar 

  24. Dukhno O, Przybilla F, Muhr V, Buchner M, Hirsch T, Mély Y (2018) Time-dependent luminescence loss for individual upconversion nanoparticles upon dilution in aqueous solution. Nanoscale 10(34):15904–15910

    Article  CAS  Google Scholar 

  25. Plohl O, Kraft M, Kovač J, Belec B, Ponikvar-Svet M, Würth C, Lisjak D, Resch-Genger U (2017) Optically detected degradation of NaYF4:Yb,Tm-based upconversion nanoparticles in phosphate buffered saline solution. Langmuir 33(2):553–560

    Article  CAS  Google Scholar 

  26. Lahtinen S, Lyytikäinen A, Päkkilä H, Hömppi E, Perälä N, Lastusaari M, Soukka T (2016) Disintegration of hexagonal NaYF4:Yb3+,Er3+ upconverting nanoparticles in aqueous media: the role of fluoride in solubility equilibrium. J Phys Chem C 121(1):656–665

    Article  CAS  Google Scholar 

  27. Kim ST, Saha K, Kim C, Rotello VM (2013) The role of surface functionality in determining nanoparticle cytotoxicity. Acc Chem Res 46(3):681–691

    Article  CAS  Google Scholar 

  28. Del Pino P, Pelaz B, Zhang Q, Maffre P, Nienhaus GU, Parak WJ (2014) Protein corona formation around nanoparticles–from the past to the future. Mater Horizons 1(3):301–313

    Article  Google Scholar 

  29. Generalova AN, Rocheva VV, Nechaev AV, Khochenkov DA, Sholina NV, Semchishen VA, Zubov VP, Koroleva AV, Chichkov BN, Khaydukov EV (2016) PEG-modified upconversion nanoparticles for in vivo optical imaging of tumors. RSC Adv 6(36):30089–30097

    Article  CAS  Google Scholar 

  30. García KP, Zarschler K, Barbaro L, Barreto JA, O’Malley W, Spiccia L, Stephan H, Graham B (2014) Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10(13):2516–2529

    Article  CAS  Google Scholar 

  31. Nsubuga A, Zarschler K, Sgarzi M, Graham B, Stephan H, Joshi T (2018) Towards Utilising Photocrosslinking of Polydiacetylenes for the preparation of “stealth” Upconverting nanoparticles. Angew Chem Int Ed 130(49):16268–16272

    Article  Google Scholar 

  32. Jin Q, Deng Y, Chen X, Ji J (2019) Rational Design of Cancer Nanomedicine for simultaneous stealth surface and enhanced cellular uptake. ACS Nano 13(2):954–977

    CAS  Google Scholar 

  33. Erathodiyil N, Ying JY (2011) Functionalization of inorganic nanoparticles for bioimaging applications. Acc Chem Res 44(10):925–935

    Article  CAS  Google Scholar 

  34. Muhr V, Wilhelm S, Hirsch T, Wolfbeis OS (2014) Upconversion nanoparticles: from hydrophobic to hydrophilic surfaces. Acc Chem Res 47(12):3481–3493

    Article  CAS  Google Scholar 

  35. Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid−functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130(10):3023–3029

    Article  CAS  Google Scholar 

  36. Zhou HP, Xu CH, Sun W, Yan CH (2009) Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Adv Funct Mater 19(24):3892–3900

    Article  CAS  Google Scholar 

  37. Hu H, Yu M, Li F, Chen Z, Gao X, Xiong L, Huang C (2008) Facile epoxidation strategy for producing amphiphilic up-converting rare-earth nanophosphors as biological labels. Chem Mater 20(22):7003–7009

    Article  CAS  Google Scholar 

  38. Park YI, Kim JH, Lee KT, Jeon KS, Na HB, Yu JH, Kim HM, Lee N, Choi SH, Baik SI, Kim H (2009) Nonblinking and nonbleaching upconverting nanoparticles as an optical imaging nanoprobe and T1 magnetic resonance imaging contrast agent. Adv Mater 21(44):4467–4471

    Article  CAS  Google Scholar 

  39. Nam SH, Bae YM, Park YI, Kim JH, Kim HM, Choi JS, Lee KT, Hyeon T, Suh YD (2011) Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew Chem 123(27):6217–6221

    Article  Google Scholar 

  40. Rieffel J, Chen F, Kim J, Chen G, Shao W, Shao S, Chitgupi U, Hernandez R, Graves SA, Nickles RJ, Prasad PN, Kim C, Cai W, Lovell JF (2015) Hexamodal imaging with Porphyrin-phospholipid-coated upconversion nanoparticles. Adv Mater 27(10):1785–1790

    Article  CAS  Google Scholar 

  41. Liang S, Zhang X, Wu Z, Liu Y, Zhang H, Sun H, Sun H, Yang B (2012) Decoration of up-converting NaYF4:Yb,Er(Tm) nanoparticles with surfactant bilayer. A versatile strategy to perform oil-to-water phase transfer and subsequently surface silication. CrystEngComm 14(10):3484–3489

    Article  CAS  Google Scholar 

  42. Pellegrino T, Manna L, Kudera S, Liedl T, Koktysh D, Rogach AL, Keller S, Rädler J, Natile G, Parak WJ (2004) Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett 4(4):703–707

    Article  CAS  Google Scholar 

  43. Wang C, Tao H, Cheng L, Liu Z (2011) Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles. Biomaterials 32(26):6145–6154

    Article  CAS  Google Scholar 

  44. Jiang G, Pichaandi J, Johnson NJ, Burke RD, Van Veggel FC (2012) An effective polymer cross-linking strategy to obtain stable dispersions of upconverting NaYF4 nanoparticles in buffers and biological growth media for biolabeling applications. Langmuir 28(6):3239–3247

    Article  CAS  Google Scholar 

  45. Brühwiler D (2010) Postsynthetic functionalization of mesoporous silica. Nanoscale 2(6):887–892

    Article  Google Scholar 

  46. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A Math Phys Eng Sci 368(1915):1333–1383

    Article  CAS  Google Scholar 

  47. Xu Z, Quintanilla M, Vetrone F, Govorov AO, Chaker M, Ma D (2015) Harvesting lost photons: plasmon and upconversion enhanced broadband photocatalytic activity in core@ shell microspheres based on lanthanide-doped NaYF4, TiO2, and Au. Adv Funct Mater 25(20):2950–2960

    Article  CAS  Google Scholar 

  48. Runowski M, Goderski S, Paczesny J, Ksiezopolska-Gocalska M, Ekner-Grzyb A, Grzyb T, Rybka JD, Giersig M, Lis S (2016) Preparation of biocompatible, luminescent-plasmonic core/shell nanomaterials based on lanthanide and gold nanoparticles exhibiting SERS effects. J Phys Chem C 120(41):23788–23798

    Article  CAS  Google Scholar 

  49. Liu J, Bu W, Pan L, Shi J (2013) NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew Chem 125(16):4471–4475

    Article  Google Scholar 

  50. Li C, Ma C, Wang F, Xi Z, Wang Z, Deng Y, He N (2012) Preparation and biomedical applications of core–shell silica/magnetic nanoparticle composites. J Nanosci Nanotechnol 12(4):2964–2972

    Article  CAS  Google Scholar 

  51. Jalil RA, Zhang Y (2008) Biocompatibility of silica coated NaYF4 upconversion fluorescent nanocrystals. Biomaterials 29(30):4122–4128

    Article  CAS  Google Scholar 

  52. Liz-Marzán LM, Giersig M, Mulvaney P (1996) Synthesis of nanosized gold−silica core−shell particles. Langmuir 12(18):4329–4335

    Article  Google Scholar 

  53. Caruso F (2001) Nanoengineering of particle surfaces. Adv Mater 13(1):11–22

    Article  CAS  Google Scholar 

  54. Liu F, Zhao Q, You H, Wang Z (2013) Synthesis of stable carboxy-terminated NaYF4:Yb3+,Er3+@SiO2 nanoparticles with ultrathin shell for biolabeling applications. Nanoscale 5(3):1047–1053

    Article  CAS  Google Scholar 

  55. Wang M, Mi C, Zhang Y, Liu J, Li F, Mao C, Xu S (2009) NIR-responsive silica-coated NaYbF4: Er/Tm/Ho upconversion fluorescent nanoparticles with tunable emission colors and their applications in immunolabeling and fluorescent imaging of cancer cells. J Phys Chem C 113(44):19021–19027

    Article  CAS  Google Scholar 

  56. Idris NM, Gnanasammandhan MK, Zhang J, Ho PC, Mahendran R, Zhang Y (2012) In vivo photodynamic therapy using upconversion nanoparticles as remote-controlled nanotransducers. Nat Med 18(10):1580

    Article  CAS  Google Scholar 

  57. Bagwe RP, Hilliard LR, Tan W (2006) Surface modification of silica nanoparticles to reduce aggregation and nonspecific binding. Langmuir 22(9):4357–4362

    Article  CAS  Google Scholar 

  58. Wang M, Mi CC, Wang WX, Liu CH, Wu YF, Xu ZR, Mao CB, Xu SK (2009) Immunolabeling and NIR-excited fluorescent imaging of HeLa cells by using NaYF4:Yb,Er upconversion nanoparticles. ACS Nano 3(6):1580–1586

    Article  CAS  Google Scholar 

  59. Hu H, Xiong L, Zhou J, Li F, Cao T, Huang C (2009) Multimodal-luminescence Core–Shell Nanocomposites for targeted imaging of tumor cells. Chem Eur J 15(14):3577–3584

    Article  CAS  Google Scholar 

  60. Vuojola J, Riuttamäki T, Kulta E, Arppe R, Soukka T (2012) Fluorescence-quenching-based homogeneous caspase-3 activity assay using photon upconversion. Anal Chim Acta 725:67–73

    Article  CAS  Google Scholar 

  61. Shan G, Weissleder R, Hilderbrand SA (2013) Upconverting organic dye doped core-shell nano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics 3(4):267

    Article  CAS  Google Scholar 

  62. Schäfer H, Ptacek P, Kömpe K, Haase M (2007) Lanthanide-doped NaYF4 nanocrystals in aqueous solution displaying strong up-conversion emission. Chem Mater 19(6):1396–1400

    Article  CAS  Google Scholar 

  63. Voliani V, González-Béjar M, Herranz-Pérez V, Duran-Moreno M, Signore G, Garcia-Verdugo JM, Pérez-Prieto J (2013) Orthogonal functionalisation of upconverting NaYF4 nanocrystals. Chem Eur J 19(40):13538–13546

    Article  CAS  Google Scholar 

  64. Zhang W, Peng B, Tian F, Qin W, Qian X (2013) Facile preparation of well-defined hydrophilic core–shell upconversion nanoparticles for selective cell membrane glycan labeling and cancer cell imaging. Anal Chem 86(1):482–489

    Article  CAS  Google Scholar 

  65. Liu Q, Sun Y, Li C, Zhou J, Li C, Yang T, Zhang X, Yi T, Wu D, Li F (2011) 18F-labeled magnetic-upconversion nanophosphors via rare-earth cation-assisted ligand assembly. ACS Nano 5(4):3146–3157

    Article  CAS  Google Scholar 

  66. Dong A, Ye X, Chen J, Kang Y, Gordon T, Kikkawa JM, Murray CB (2010) A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J Am Chem Soc 133(4):998–1006

    Article  CAS  Google Scholar 

  67. Nsubuga A, Sgarzi M, Zarschler K, Kubeil M, Hübner R, Steudtner R, Graham B, Joshi T, Stephan H (2018) Facile preparation of multifunctionalisable “stealth” upconverting nanoparticles for biomedical applications. Dalton Trans 104:139

    Google Scholar 

  68. Bogdan N, Vetrone F, Ozin GA, Capobianco JA (2011) Synthesis of ligand-free colloidally stable water dispersible brightly luminescent lanthanide-doped upconverting nanoparticles. Nano Lett 11(2):835–840

    Article  CAS  Google Scholar 

  69. Bogdan N, Rodríguez EM, Sanz-Rodríguez F, de la Cruz MC, Juarranz Á, Jaque D, Solé JG, Capobianco JA (2012) Bio-functionalization of ligand-free upconverting lanthanide doped nanoparticles for bio-imaging and cell targeting. Nanoscale 4(12):3647–3650

    Article  CAS  Google Scholar 

  70. Rampazzo E, Genovese D, Palomba F, Prodi L, Zaccheroni N (2018) NIR-fluorescent dye doped silica nanoparticles for in vivo imaging, sensing and theranostic. Methods Appl Fluoresc 6(2):022002

    Article  CAS  Google Scholar 

  71. Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WC (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1(5):16014

    Article  CAS  Google Scholar 

  72. Mandl G, Cooper D, Hirsch T, Seuntjens J, Capobianco JA (2019) Perspective: lanthanide-doped upconverting nanoparticles. Methods Appl Fluoresc 7(1):012004

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hirsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hirsch, T. (2020). Surface Modification of Near Infrared-Emitting Nanoparticles for Biomedical Applications. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_3

Download citation

Publish with us

Policies and ethics