Abstract
Geotechnical engineers use various Artificial Intelligence (AI) techniques for solving different problems. This paper will survey the application of different AI techniques {Artificial Neural Network (ANN), Support Vector Machine (SVM), Least Square Support Vector Machine (LSSVM), Genetic Programing (GP), Relevance Vector Machine (RVM), Multivariate Adaptive Regression Spline (MARS), Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS), Minimax Probability Machine Regression (MPMR), Gaussian Process Regression (GPR), Adaptive Neuro Fuzzy Inference System (ANFIS)} in different fields of geotechnical engineering such as shallow foundation, site characterization, liquefaction, slope stability, reliability, etc. The advantages of different AI techniques will be described.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-Kiefa, M.A.: General regression neural networks for driven piles in cohesionless soils. J. Geotech. Geoenviron. Eng. ASCE 124(12), 1177–1185 (1998)
Ahmad, I., El Naggar, H., Kahn, A.N.: Artificial neural network application to estimate kinematic soil pile interaction response parameters. Soil Dyn. Earthq. Eng. 27(9), 892–905 (2007)
Chan, W.T., Chow, Y.K., Liu, L.F.: Neural network: an alternative to pile driving formulas. Comput. Geotech. 17, 135–156 (1995)
Das, S.K., Basudhar, P.K.: Undrained lateral load capacity of piles in clay using artificial neural network. Comput. Geotech. 33(8), 454–459 (2006)
Goh, A.T.C.: Nonlinear modeling in geotechnical engineering using neural networks. Aust. Civil Eng. Trans. CE 36(4), 293–297 (1994)
Goh, A.T.C.: Empirical design in geotechnics using neural networks. Geotechnique 45(4), 709–714 (1995)
Goh, A.T.C.: Pile driving records reanalyzed using neural networks. J. Geotech. Eng. ASCE 122(6), 492–495 (1996)
Hanna, A.M., Morcous, G., Helmy, M.: Efficiency of pile groups installed in cohesionless soil using artificial neural networks. Can. Geotech. J. 41(6), 1241–1249 (2004)
Lee, I.M., Lee, J.H.: Prediction of pile bearing capacity using artificial neural networks. Comput. Geotech. 18(3), 189–200 (1996)
Nawari, N.O., Liang, R., Nusairat, J.: Artificial intelligence techniques for the design and analysis of deep foundations. Electron. J. Geotech. Eng. (1999). http://geotech.civeng.okstate.edu/ejge/ppr9909
Rahman, M.S., Wang, J., Deng, W., Carter, J.P.: A neural network model for the uplift capacity of suction cassions. Comput. Geotech. 28(4), 269–287 (2001)
Shahin, M.A.: Modeling axial capacity of pile foundations by intelligent computing. In: Proceedings of the BGA International Conference on Foundations, Dundee (Scotland) (2008, in press)
Teh, C.I., Wong, K.S., Goh, A.T.C., Jaritngam, S.: Prediction of pile capacity using neural networks. J. Comput. Civil Eng. ASCE 11(2), 129–138 (1997)
Agrawal, G., Chameau, J.A., Bourdeau, P.L.: Assessing the liquefaction susceptibility at a site based on information from penetration testing. In: Kartam, N., Flood, I., Garrett, J.H. (eds.) Artificial Neural Networks for Civil Engineers: Fundamentals and Applications, New York, pp. 185–214 (1997)
Ali, H.E., Najjar, Y.M.: Neuronet-based approach for assessing liquefaction potential of soils. Transportation Research Record No. 1633, 3-8 (1998)
Baziar, M.H., Ghorbani, A.: Evaluation of lateral spreading using artificial neural networks. Soil Dyn. Earthq. Eng. 25(1), 1–9 (2005)
Goh, A.T.: Probabilistic neural network for evaluating seismic liquefaction potential. Can. Geotech. J. 39(1), 219–232 (2002)
Goh, A.T.C.: Seismic liquefaction potential assessed by neural network. J. Geotech. Geoenviron. Eng. ASCE 120(9), 1467–1480 (1994)
Goh, A.T.C.: Neural-network modeling of CPT seismic liquefaction data. J. Geotech. Eng. ASCE 122(1), 70–73 (1996)
Hanna, A.M., Ural, D., Saygili, G.: Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dyn. Earthq. Eng. 27(6), 521–540 (2007)
Javadi, A., Rezania, M., Mousavi, N.M.: Evaluation of liquefaction induced lateral displacements using genetic programming. Comput. Geotech. 33(4–5), 222–233 (2006)
Juang, C.H., Chen, C.J.: CPT-based liquefaction evaluation using artificial neural networks. Comput.-Aided Civil Infrastruct. Eng. 14(3), 221–229 (1999)
Kim, Y., Kim, B.: Use of artificial neural networks in the prediction of liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. 132(11), 1502–1504 (2006)
Ural, D.N., Saka, H.: Liquefaction assessment by neural networks. Electron. J. Geotech. Eng. (1998). http://www.ejge.com/Ppr9803/Ppr9803.htm
Young-Su, K., Byung-Tak, K.: Use of artificial neural networks in the prediction of liquefaction resistance of sands. J. Geotech. Geo-environ. Eng. 132(11), 1502–1504 (2006)
Samui, P.: Prediction of friction capacity of driven piles in clay using the support vector machine. Can. Geotech. J. 45(2), 288–296 (2008)
Prayogo, D., Susanto, Y.T.T.: Optimizing the prediction accuracy of friction capacity of driven piles in cohesive soil using a novel self-tuning least squares support vector machine. Adv. Civil Eng. Article number 6490169
Chen, Y., Azzam, R., Zhang, F.: The displacement computation and construction pre-control of a foundation pit in Shanghai utilizing FEM and intelligent methods. Geotech. Geol. Eng. 24(6), 1781–1801 (2006)
Shahin, M.A., Jaksa, M.B., Maier, H.R.: Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Aust. Geomech. 37(4), 45–52 (2002)
Shahin, M.A., Jaksa, M.B., Maier, H.R.: Neurofuzzy networks applied to settlement of shallow foundations on granular soils. In: Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP9, San Francisco, Millpress, Rotterdam, pp. 1379–1383 (2003)
Shahin, M.A., Jaksa, M.B., Maier, H.R.: Application of neural networks in foundation engineering. In: International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges & Solutions (2004). http://www.civil.iitm.ac.in
Shahin, M.A., Jaksa, M.B., Maier, H.R.: Neural network based stochastic design charts for settlement prediction. Can. Geotech. J. 42(1), 110–120 (2005)
Shahin, M.A., Jaksa, M.B., Maier, H.R.: Stochastic simulation of settlement of shallow foundations based on a deterministic neural network model. In: Proceedings of the International Congress on Modeling and Simulation, MODSIM 2005, Melbourne (Australia), pp. 73–78 (2005)
Shahin, M.A., Maier, H.R., Jaksa, M.B.: Predicting settlement of shallow foundations using neural networks. J. Geotech. Geoenviron. Eng. ASCE 128(9), 785–793 (2002)
Shahin, M.A., Maier, H.R., Jaksa, M.B.: Closure to: predicting settlement of shallow foundations on cohesionless soils using neural networks. J. Geotech. Geoenviron. Eng. ASCE 128(9), 785–793 (2003). International Congress on Modeling and Simulation, MODSIM 2003, Townsville, Queensland, 1886–1891
Shahin, M.A., Maier, H.R., Jaksa, M.B.: Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models. Comput. Geotech. 30(8), 637–647 (2003)
Sivakugan, N., Eckersley, J.D., Li, H.: Settlement predictions using neural networks. Aust. Civil Eng. Trans. CE40, 49–52 (1998)
Kurup, P.U., Dudani, N.K.: Neural network for profiling stress history of clays from PCPT data. J. Geotech. Geoenviron. Eng. 128(7), 569–579 (2002)
Lee, S.J., Lee, S.R., Kim, Y.S.: An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Comput. Geotech. 30(6), 489–503 (2003)
Penumadu, D., Jin-Nan, L., Chameau, J.-L., Arumugam, S.: Rate dependent behavior of clays using neural networks. In: Proceedings of the 13th Conference of the International Society of Soil Mechanics & Foundation Engineering, New Delhi, pp. 1445–1448 (1994)
Yang, Y., Rosenbaum, M.S.: The artificial neural network as a tool for assessing geotechnical properties. Geotech. Eng. J. 20(2), 149–168 (2002)
Erzin, Y.: Artificial neural networks approach for swell pressure versus soil suction behavior. Can. Geotech. J. 44(10), 1215–1223 (2007)
Najjar, Y.M., Basheer, I.A., McReynolds, R.: Neural modeling of Kansan soil swelling. Transp. Res. Rec. 1526, 14–19 (1996)
Agrawal, G., Weeraratne, S., Khilnani, K.: Estimating clay liner and cover permeability using computational neural networks. In: Proceedings of the 1st Congress on Computing in Civil Engineering, Washington (1994)
Goh, A.T.C.: Modeling soil correlations using neural networks. J. Comput. Civil Eng. ASCE 9(4), 275–278 (1995)
Gribb, M.M., Gribb, G.W.: Use of neural networks for hydraulic conductivity determination in unsaturated soil. In: Proceedings of the 2nd International Conference on Ground Water Ecology, Bethesda, pp. 155–163 (1994)
Najjar, Y.M., Basheer, I.A., Naouss, W.A.: On the identification of compaction characteristics by neuronets. Comput. Geotech. 18(3), 167–187 (1996)
Goh, A.T.C., Wong, K.S., Broms, B.B.: Estimation of lateral wall movements in braced excavation using neural networks. Can. Geotech. J. 32, 1059–1064 (1995)
Kung, G.T., Hsiao, E.C., Schuster, M., Juang, C.H.: A neural network approach to estimating deflection of diaphram walls caused by excavation in clays. Comput. Geotech. 34(5), 385–396 (2007)
Lu, Y.: Underground blast induced ground shock and its modeling using artificial neural network. Comput. Geotech. 32(3), 164–178 (2005)
Rankine, R., Sivakugan, N.: Prediction of paste backfill performance using artificial neural networks. In: Proceedings of the 16th International Society for Soil Mechanics and Foundation Engineering Osaka, Japan, pp. 1107–1110 (2005)
Singh, T.N., Singh, V.: An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng. 23(3), 249–262 (2005)
Shang, J.Q., Ding, W., Rowe, R.K., Josic, L.: Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks. Can. Geotech. J. 41(6), 1054–1067 (2004)
Gokceoglu, C., Yesilnacar, E., Sonmez, H., Kayabasi, A.: A neuro-fuzzy model for modulus of deformation of jointed rock masses. Comput. Geotech. 31(5), 375–383 (2004)
Basheer, I.A., Reddi, L.N., Najjar, Y.M.: Site characterization byneuronets: an application to the landfill sitting problem. Ground Water 34, 610–617 (1996)
Najjar, Y.M., Basheer, I.A.: Neural network approach for site characterization and uncertainty prediction. ASCE Geotech. Spec. Publ. 58(1), 134–148 (1996)
Rizzo, D.M., Dougherty, D.E.: Application of artificial neural networks for site characterization using hard and soft information. In: Proceedings of the 10th International Conference on Computational Methods in Water Resources, pp. 793–799. Kluwer Academic, Dordrecht (1994)
Rizzo, D.M., Lillys, T.P., Dougherty, D.E.: Comparisons of site characterization methods using mixed data. ASCE Geotech. Spec. Publ. 58(1), 157–179 (1996)
Zhou, Y., Wu, X.: Use of neural networks in the analysis and interpretation of site investigation data. Comput. Geotech. 16, 105–122 (1994)
Benardos, A.G., Kaliampakos, D.C.: Modeling TBM performance with artificial neural networks. Tunn. Undergr. Space Technol. 19(6), 597–605 (2004)
Lee, C., Sterling, R.: Identifying probable failure modes for underground openings using a neural network. Int. J. Rock Mech. Min. Sci. Geomech. Abs. 29(1), 49–67 (1992)
Moon, H.K., Na, S.M., Lee, C.W.: Artificial neural-network integrated with expert-system for preliminary design of tunnels and slopes. In: Proceedings of the 8th International Congress on Rock Mechanics, pp. 901–905. Balkema, Rotterdam (1995)
Neaupane, K., Achet, S.: Some applications of a back-propagation neural network in geo-engineering. Environ. Geol. 45(4), 567–575 (2004)
Shi, J., Ortigao, J.A.R., Bai, J.: Modular neural networks for predicting settlement during tunneling. J. Geotech. Geoenviron. Eng. ASCE 124(5), 389–395 (1998)
Shi, J.J.: Reducing prediction error by transforming input data for neural networks. J. Comput. Civil Eng. ASCE 14(2), 109–116 (2000)
Yoo, C., Kim, J.: Tunneling performance prediction using an integrated GIS and neural network. Comput. Geotech. 34(1), 19–30 (2007)
Ferentinou, M.D., Sakellariou, M.G.: Computational intelligence tools for the prediction of slope performance. Comput. Geotech. 34(5), 362–384 (2007)
Goh, A.T.C., Kulhawy, F.H.: Neural network approach to model the limit state surface for reliability analysis. Can. Geotech. J. 40(6), 1235–1244 (2003)
Mayoraz, F., Vulliet, L.: Neural networks for slope movement prediction. Int. J. Geomech. 2(2), 153–173 (2002)
Ni, S.H., Lu, P.C., Juang, C.H.: A fuzzy neural network approach to evaluation of slope failure potential. J. Microcomput. Civil Eng. 11, 59–66 (1996)
Zhao, H.: Slope reliability analysis using a support vector machine. Comput. Geotech. 35(3), 459–467 (2008)
Samui, P.: Seismic liquefaction potential assessment by using relevance vector machine. Earthq. Eng. Eng. Vib. 6(4), 331–336 (2007)
Samui, P., Sitharam, T.G.: Machine learning modelling for predicting soil liquefaction susceptibility. Nat. Hazards Earth Syst. Sci. 11(1), 1–9 (2011)
Samui, P., Hariharan, R.: Modeling of SPT seismic liquefaction data using minimax probability machine. Geotech. Geol. Eng. 32(3), 699–703 (2014)
Samui, P., Jagan, J., Hariharan, R.: An alternative method for determination of liquefaction susceptibility of soil. Geotech. Geol. Eng. 34(2), 735–738 (2016)
Samui, P., Kim, D., Hariharan, R.: Determination of seismic liquefaction potential of soil based on strain energy concept. Environ. Earth Sci. 74(7), 5581–5585 (2015)
Xue, X., Yang, X.: Seismic liquefaction potential assessed by support vector machines approaches. Bull. Eng. Geol. Env. 75(1), 153–162 (2016)
Samui, P.: Geotechnical site characterization and liquefaction evaluation using intelligent models. Department of Civil Engineering, Ph.D. thesis, IISC, India (2008)
Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)
Lanckriet, G.R.G., El Ghaoui, L., Bhattacharyya, C., Jordan, M.I.: Minimax probability machine. In: Advances in Neural Information Processing Systems. MIT Press (2002)
Suykens, J.A.K., De, B.J., Lukas, L., Vandewalle, J.: Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1–4), 85–105 (2002)
Goh, A.T.C.: Seismic liquefaction potential assessed by neural networks. J. Geotech. Eng. 120(9), 1467–1480 (1994)
Goh, A.T.C.: Neural-network modeling of CPT seismic liquefaction data. J. Geotech. Eng. 122(1), 70–73 (1996)
Goh, A.T.C.: Probabilistic neural network for evaluating seismic liquefaction potential. Can. Geotech. J. 39, 219–232 (2002)
Juang, C.H., Chen, C.J., Tang, W.H., Rosowsky, D.V.: CPT-based liquefaction analysis. Part 1. Determination of limit state function. Géotechnique 50(5), 583–592 (2000)
Kurup, P.U., Dudani, N.K.: CPT evaluation of liquefaction potential using neural networks. In: Proceedings of the Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, CD ID: 4.36 (2000)
Kurup, P.U., Garg, A.: Evaluation of liquefaction potential using ART based neural networks. In: 84th Transportation Research Board Annual Meeting Transportation Research Record, Washington D.C. (2000)
Samui, P.: Slope stability analysis: a support vector machine approach. Environ. Geol. 56(2), 255–267 (2008)
Lee, T.L., Lin, H.M., Lu, Y.P.: Assessment of highway slope failure using neural networks. J. Zhejiang Univ. Sci. A 10(1), 101–108 (2008)
Samui, P., Kothari, D.P.: Utilization of a least square support vector machine (LSSVM) for slope stability analysis. ScientiaIranica 18(1), 53–58 (2011)
Kaveh, A., Hamze-Ziabari, S.M., Bakhshpoori, T.: Soft computing-based slope stability assessment: a comparative study. Geomech. Eng. 14(3), 257–269 (2018)
Muduli, P.K., Das, S.K., Samui, P., Sahoo, R.: Prediction of uplift capacity of suction caisson in clay using extreme learning machine. Ocean Syst. Eng. 5(1), 41–54 (2015)
Muduli, P.K., Das, S.K.: First-order reliability method for probabilistic evaluation of liquefaction potential of soil using genetic programming. Int. J. Geomech. 15(3) (2013)
Rahman, M.S., Wang, J., Deng, W., Carter, J.P.: A neural network model for the uplift capacity of suction caissons. Comput. Geotech. 28, 269–287 (2001)
Samui, P., Kumar, R., Yadav, U., Kumari, S., Bui, D.T.: Reliability analysis of slope safety factor by using GPR and GP. Geotech. Geol. Eng. 37, 2245–2254 (2018)
Samui, P., Kim, D., Jagan, J., Roy, S.S.: Determination of uplift capacity of suction caisson using Gaussian process regression, minimax probability machine regression and extreme learning machine. Iran. J. Sci. Technol. Trans. Civil Eng. 43, 651–657 (2018)
Bhattacharya, S., Murakonda, P., Kumar Das, S.: Prediction of uplift capacity of Suction caisson in clay using Functional Network and Multivariate Adaptive Regression Spline. ScientiaIranica 25(2A), 517–531 (2018)
Shahr-Babak, M.M., Khanjani, M.J., Qaderi, K.: Uplift capacity prediction of suction caisson in clay using a hybrid intelligence method (GMDH-HS). Appl. Ocean Res. 59, 408–416 (2016)
Samui, P., Das, S., Kim, D.: Uplift capacity of suction caisson in clay using multivariate adaptive regression splines. Ocean Eng. 38(17–18), 2123–2127 (2011)
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine a new learning scheme of feed forward neural networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN2004), Budapest, Hungary (2004)
Koza, J.R.: A paradigm for genetically breeding populations of computer programs to solve problems. Computer Science Department, Stanford University, Margaret Jacks Hall, Stanford, Calif (1990)
Friedman, J.H.: Multivariate adaptive regression splines. Annu. Stat. 19, 1–141 (1991)
Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. SMC-1(4), 364–378 (1971)
Castillo, E.: Functional networks. Neural Process. Lett. 7, 151–159 (1998)
Kordjazi, A., Pooya Nejad, F., Jaksa, M.B.: Prediction of load-carrying capacity of piles using a support vector machine and improved data collection. In: Ramsay, G. (eds.) Proceedings of the 12th Australia New Zealand Conference on Geomechanics: The Changing Face of the Earth – Geomechanics & Human Influence, pp. 1–8 (2015)
Samui, P., Bhattacharya, G., Choudhury, D.: Prediction of ultimate capacity of laterally loaded piles in clay: a relevance vector machine approach. In: Avineri, E., et al. (eds.) Advances in Soft Computing, (ISSN 1615–3871) also in ‘Applications of Soft Computing’ (ISBN: 978-3-540-88078-3), vol. 52, no. 1, pp. 127–136. Springer, Berlin (2009)
Samui, P., Kim, D.: Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput. Appl. 23, 1–5 (2013)
Das, S.K., Suman, S.: Prediction of lateral load capacity of pile in clay using multivariate adaptive regression spline and functional network. Arab. J. Sci. Eng. 40(6), 1565–1578 (2015)
Samui, P.: Determination of ultimate capacity of driven piles in cohesionless soil: a Multivariate Adaptive Regression Spline approach. Int. J. Numer. Anal. Methods Geomech. 36, 1434–1439 (2012)
Shahin, M.A., Jaksa, M.B.: Pullout capacity of small ground anchors by direct CPT methods and neural networks. Can. Geotech. J. 43(6), 626–637 (2006)
Samui, P.: Application of relevance vector machine for prediction of ultimate capacity of driven piles in cohesionless soils. Geotech. Geol. Eng. 30, 1261–1270 (2012)
Mohanty, R., Suman, S., Das, S.K.: Modelling the pull-out capacity of ground anchors using multi-objective feature selection. Arab. J. Sci. Eng. 42(3), 1231–1241 (2017)
Samui, P., Sitharam, T.G.: Pullout capacity of small ground anchors: a relevance vector machine approach. Geomech. Eng. 1(3), 259–262 (2009)
Shahin, M.A.: Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomech. Geoeng. 10(2), 109–125 (2015)
Kaloop, M.R., Hu, J.W., Elbeltagi, E.: Predicting the pullout capacity of small ground anchors using nonlinear integrated computing techniques. Shock and Vibration, Article ID 2601063, 10 p. (2017)
Kumar, M., Samui, P.: Analysis of epimetamorphic rock slopes using soft computing. J. Shanghai Jiaotong Univ. (Sci.) 19(3), 274–278 (2014)
Samui, P.: Multivariate adaptive regression spline (Mars) for prediction of elastic modulus of jointed rock mass. Geotech. Geol. Eng. 31(1), 249–253 (2013)
Jagan, J., Samui, P., Roy, S.S., Kurup, P.: Intelligent models applied to elastic modulus of jointed rock mass. In: Handbook of Research on Trends and Digital Advances in Engineering Geology, pp. 1–30, 12 July 2017
Kumar, M., Bhatt, M., Samui, P.: Modeling of elastic modulus of jointed rock mass: Gaussian process regression approach. Int. J. Geomech. 14(3) (2014)
Ceryan, N., Okkan, U., Samui, P., et al.: Modeling of tensile strength of rocks materials based on support vector machines approaches. Int. J. Numer. Anal. Meth. Geomech. 37(16), 2655–2670 (2013)
Kumar, M., Samui, P., Naithani, A.K.: Determination of stability of epimetamorphic rock slope using Minimax Probability Machine Geomatics. Nat. Hazards Risk 7(1), 186–193 (2016)
Samui, P.: Predicted ultimate capacity of laterally loaded piles in clay using support vector machine. Geomech. Geoeng. 3(2), 113–120 (2008)
Samui, P., Sitharam, T.G.: Least-square support vector machine applied to settlement of shallow foundations on cohesionless soils. Int. J. Numer. Anal. Meth. Geomech. 32(17), 2033–2043 (2008)
Shahnazari, H., Shahin, M.A., Tutunchian, M.A.: Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils. Int. J. Civil Eng. 12(1), 55–64 (2014)
Samui, P., Kurup, P.: Use of the relevance vector machine for prediction of an over consolidation ratio. Int. J. Geomech. 13(1), 26–32 (2013)
Padmini, D., Ilamparuthi, K., Sudheer, K.P.: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 35, 33–46 (2008)
Samui, P.: Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil. Int. J. Numer. Anal. Meth. Geomech. 36(1), 100–110 (2012)
Park, H., Lee, S.R.: Evaluation of the compression index of soils using an artificial neural network. Comput. Geotech. 38, 472–481 (2011)
Samui, P., Kim, D.: Minimax probability machine regression and extreme learning machine applied to compression index of marine clay. IJMS 46(11), 2350–2356 (2017)
Ahangar-Asr, A., Faramarzi, A., Mottaghifard, N., Javadi, A.A.: Modelling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Comput. Geosci. 37(11), 1860–1869 (2011)
Yilmaz, I., Marschalko, M., Bednarik, M., Kaynar, O., Fojtova, L.: Neural computing models for prediction of permeability coefficient of coarse grained soils. Neural Comput. Appl. (2011). https://doi.org/10.1007/s00521-011-0535-4
Kayadelen, C.: Estimation of effective stress parameter of unsaturated soils by using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 32, 1087–1106 (2008)
Samui, P., Jagan, J.: Determination of effective stress parameter of unsaturated soils: a Gaussian process regression approach. Front. Struct. Civil Eng. 7(2), 133–136 (2013)
Samui, P., Kurup, P.: Use of relevance vector machine for prediction of over consolidation ratio. Int. J. Geomech. 13(1), 26–32 (2011)
Samui, P., Kurup, P.: Multivariate adaptive regression spline (MARS) and least squares support vector machine (LSSVM) for OCR prediction. Soft. Comput. 16(8), 1347–1351 (2012)
Samui, P., Sitharam, T.G.: Site characterization model using least-square support vector machine and relevance vector machine based on corrected SPT data (Nc) Int. J. Numer. Anal. Methods Geomech. 34(7), 755–770 (2010)
Chua, C.G., Goh, A.T.C.: Estimating wall deflections in deep excavations using Bayesian neural networks. Tunn. Undergr. Space Technol. 20(4), 400–409 (2005)
Ghaleini, E.N., Koopialipoor, M., Momenzadeh, M., Sarafraz, M.E., Mohamad, E.T., Gordan, B.A.: Combination of artificial bee colony and neural network for approximating the safety factor of retaining walls. Eng. Comput. 35, 1–12 (2018)
Kumar, R., Samui, P., Kumari, S.: Reliability analysis of infinite slope using metamodels. Geotech. Geol. Eng. 35(3), 1221–1230 (2017)
Chan, C.L., Low, B.K.: Probabilistic analysis of laterally loaded piles using response surface and neural network approaches. Comput. Geotech. 43, 101–110 (2012)
Kang, F., Li, J.: Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes. J. Comput. Civil Eng. 30(3) (2016)
Kang, F., Li, J.S., Li, J.J.: System reliability analysis of slopes using least squares support vector machines with particle swarm optimization. Neurocomputing 209, 46–56 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Samui, P. (2020). Application of Artificial Intelligence in Geo-Engineering. In: Correia, A., Tinoco, J., Cortez, P., Lamas, L. (eds) Information Technology in Geo-Engineering. ICITG 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-32029-4_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-32029-4_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-32028-7
Online ISBN: 978-3-030-32029-4
eBook Packages: EngineeringEngineering (R0)