Skip to main content

Application of Artificial Intelligence in Geo-Engineering

  • Conference paper
  • First Online:
Information Technology in Geo-Engineering (ICITG 2019)

Part of the book series: Springer Series in Geomechanics and Geoengineering ((SSGG))

Included in the following conference series:

Abstract

Geotechnical engineers use various Artificial Intelligence (AI) techniques for solving different problems. This paper will survey the application of different AI techniques {Artificial Neural Network (ANN), Support Vector Machine (SVM), Least Square Support Vector Machine (LSSVM), Genetic Programing (GP), Relevance Vector Machine (RVM), Multivariate Adaptive Regression Spline (MARS), Extreme Learning Machine (ELM), Adaptive Neuro Fuzzy Inference System (ANFIS), Minimax Probability Machine Regression (MPMR), Gaussian Process Regression (GPR), Adaptive Neuro Fuzzy Inference System (ANFIS)} in different fields of geotechnical engineering such as shallow foundation, site characterization, liquefaction, slope stability, reliability, etc. The advantages of different AI techniques will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abu-Kiefa, M.A.: General regression neural networks for driven piles in cohesionless soils. J. Geotech. Geoenviron. Eng. ASCE 124(12), 1177–1185 (1998)

    Article  Google Scholar 

  2. Ahmad, I., El Naggar, H., Kahn, A.N.: Artificial neural network application to estimate kinematic soil pile interaction response parameters. Soil Dyn. Earthq. Eng. 27(9), 892–905 (2007)

    Article  Google Scholar 

  3. Chan, W.T., Chow, Y.K., Liu, L.F.: Neural network: an alternative to pile driving formulas. Comput. Geotech. 17, 135–156 (1995)

    Article  Google Scholar 

  4. Das, S.K., Basudhar, P.K.: Undrained lateral load capacity of piles in clay using artificial neural network. Comput. Geotech. 33(8), 454–459 (2006)

    Article  Google Scholar 

  5. Goh, A.T.C.: Nonlinear modeling in geotechnical engineering using neural networks. Aust. Civil Eng. Trans. CE 36(4), 293–297 (1994)

    Google Scholar 

  6. Goh, A.T.C.: Empirical design in geotechnics using neural networks. Geotechnique 45(4), 709–714 (1995)

    Article  Google Scholar 

  7. Goh, A.T.C.: Pile driving records reanalyzed using neural networks. J. Geotech. Eng. ASCE 122(6), 492–495 (1996)

    Article  Google Scholar 

  8. Hanna, A.M., Morcous, G., Helmy, M.: Efficiency of pile groups installed in cohesionless soil using artificial neural networks. Can. Geotech. J. 41(6), 1241–1249 (2004)

    Article  Google Scholar 

  9. Lee, I.M., Lee, J.H.: Prediction of pile bearing capacity using artificial neural networks. Comput. Geotech. 18(3), 189–200 (1996)

    Article  Google Scholar 

  10. Nawari, N.O., Liang, R., Nusairat, J.: Artificial intelligence techniques for the design and analysis of deep foundations. Electron. J. Geotech. Eng. (1999). http://geotech.civeng.okstate.edu/ejge/ppr9909

  11. Rahman, M.S., Wang, J., Deng, W., Carter, J.P.: A neural network model for the uplift capacity of suction cassions. Comput. Geotech. 28(4), 269–287 (2001)

    Article  Google Scholar 

  12. Shahin, M.A.: Modeling axial capacity of pile foundations by intelligent computing. In: Proceedings of the BGA International Conference on Foundations, Dundee (Scotland) (2008, in press)

    Google Scholar 

  13. Teh, C.I., Wong, K.S., Goh, A.T.C., Jaritngam, S.: Prediction of pile capacity using neural networks. J. Comput. Civil Eng. ASCE 11(2), 129–138 (1997)

    Article  Google Scholar 

  14. Agrawal, G., Chameau, J.A., Bourdeau, P.L.: Assessing the liquefaction susceptibility at a site based on information from penetration testing. In: Kartam, N., Flood, I., Garrett, J.H. (eds.) Artificial Neural Networks for Civil Engineers: Fundamentals and Applications, New York, pp. 185–214 (1997)

    Google Scholar 

  15. Ali, H.E., Najjar, Y.M.: Neuronet-based approach for assessing liquefaction potential of soils. Transportation Research Record No. 1633, 3-8 (1998)

    Article  Google Scholar 

  16. Baziar, M.H., Ghorbani, A.: Evaluation of lateral spreading using artificial neural networks. Soil Dyn. Earthq. Eng. 25(1), 1–9 (2005)

    Article  Google Scholar 

  17. Goh, A.T.: Probabilistic neural network for evaluating seismic liquefaction potential. Can. Geotech. J. 39(1), 219–232 (2002)

    Article  Google Scholar 

  18. Goh, A.T.C.: Seismic liquefaction potential assessed by neural network. J. Geotech. Geoenviron. Eng. ASCE 120(9), 1467–1480 (1994)

    Article  Google Scholar 

  19. Goh, A.T.C.: Neural-network modeling of CPT seismic liquefaction data. J. Geotech. Eng. ASCE 122(1), 70–73 (1996)

    Article  Google Scholar 

  20. Hanna, A.M., Ural, D., Saygili, G.: Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dyn. Earthq. Eng. 27(6), 521–540 (2007)

    Article  Google Scholar 

  21. Javadi, A., Rezania, M., Mousavi, N.M.: Evaluation of liquefaction induced lateral displacements using genetic programming. Comput. Geotech. 33(4–5), 222–233 (2006)

    Article  Google Scholar 

  22. Juang, C.H., Chen, C.J.: CPT-based liquefaction evaluation using artificial neural networks. Comput.-Aided Civil Infrastruct. Eng. 14(3), 221–229 (1999)

    Article  Google Scholar 

  23. Kim, Y., Kim, B.: Use of artificial neural networks in the prediction of liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. 132(11), 1502–1504 (2006)

    Article  Google Scholar 

  24. Ural, D.N., Saka, H.: Liquefaction assessment by neural networks. Electron. J. Geotech. Eng. (1998). http://www.ejge.com/Ppr9803/Ppr9803.htm

  25. Young-Su, K., Byung-Tak, K.: Use of artificial neural networks in the prediction of liquefaction resistance of sands. J. Geotech. Geo-environ. Eng. 132(11), 1502–1504 (2006)

    Article  Google Scholar 

  26. Samui, P.: Prediction of friction capacity of driven piles in clay using the support vector machine. Can. Geotech. J. 45(2), 288–296 (2008)

    Article  Google Scholar 

  27. Prayogo, D., Susanto, Y.T.T.: Optimizing the prediction accuracy of friction capacity of driven piles in cohesive soil using a novel self-tuning least squares support vector machine. Adv. Civil Eng. Article number 6490169

    Google Scholar 

  28. Chen, Y., Azzam, R., Zhang, F.: The displacement computation and construction pre-control of a foundation pit in Shanghai utilizing FEM and intelligent methods. Geotech. Geol. Eng. 24(6), 1781–1801 (2006)

    Article  Google Scholar 

  29. Shahin, M.A., Jaksa, M.B., Maier, H.R.: Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Aust. Geomech. 37(4), 45–52 (2002)

    Google Scholar 

  30. Shahin, M.A., Jaksa, M.B., Maier, H.R.: Neurofuzzy networks applied to settlement of shallow foundations on granular soils. In: Proceedings of the 9th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP9, San Francisco, Millpress, Rotterdam, pp. 1379–1383 (2003)

    Google Scholar 

  31. Shahin, M.A., Jaksa, M.B., Maier, H.R.: Application of neural networks in foundation engineering. In: International e-Conference on Modern Trends in Foundation Engineering: Geotechnical Challenges & Solutions (2004). http://www.civil.iitm.ac.in

  32. Shahin, M.A., Jaksa, M.B., Maier, H.R.: Neural network based stochastic design charts for settlement prediction. Can. Geotech. J. 42(1), 110–120 (2005)

    Article  Google Scholar 

  33. Shahin, M.A., Jaksa, M.B., Maier, H.R.: Stochastic simulation of settlement of shallow foundations based on a deterministic neural network model. In: Proceedings of the International Congress on Modeling and Simulation, MODSIM 2005, Melbourne (Australia), pp. 73–78 (2005)

    Google Scholar 

  34. Shahin, M.A., Maier, H.R., Jaksa, M.B.: Predicting settlement of shallow foundations using neural networks. J. Geotech. Geoenviron. Eng. ASCE 128(9), 785–793 (2002)

    Article  Google Scholar 

  35. Shahin, M.A., Maier, H.R., Jaksa, M.B.: Closure to: predicting settlement of shallow foundations on cohesionless soils using neural networks. J. Geotech. Geoenviron. Eng. ASCE 128(9), 785–793 (2003). International Congress on Modeling and Simulation, MODSIM 2003, Townsville, Queensland, 1886–1891

    Google Scholar 

  36. Shahin, M.A., Maier, H.R., Jaksa, M.B.: Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models. Comput. Geotech. 30(8), 637–647 (2003)

    Article  Google Scholar 

  37. Sivakugan, N., Eckersley, J.D., Li, H.: Settlement predictions using neural networks. Aust. Civil Eng. Trans. CE40, 49–52 (1998)

    Google Scholar 

  38. Kurup, P.U., Dudani, N.K.: Neural network for profiling stress history of clays from PCPT data. J. Geotech. Geoenviron. Eng. 128(7), 569–579 (2002)

    Article  Google Scholar 

  39. Lee, S.J., Lee, S.R., Kim, Y.S.: An approach to estimate unsaturated shear strength using artificial neural network and hyperbolic formulation. Comput. Geotech. 30(6), 489–503 (2003)

    Article  Google Scholar 

  40. Penumadu, D., Jin-Nan, L., Chameau, J.-L., Arumugam, S.: Rate dependent behavior of clays using neural networks. In: Proceedings of the 13th Conference of the International Society of Soil Mechanics & Foundation Engineering, New Delhi, pp. 1445–1448 (1994)

    Google Scholar 

  41. Yang, Y., Rosenbaum, M.S.: The artificial neural network as a tool for assessing geotechnical properties. Geotech. Eng. J. 20(2), 149–168 (2002)

    Article  Google Scholar 

  42. Erzin, Y.: Artificial neural networks approach for swell pressure versus soil suction behavior. Can. Geotech. J. 44(10), 1215–1223 (2007)

    Article  Google Scholar 

  43. Najjar, Y.M., Basheer, I.A., McReynolds, R.: Neural modeling of Kansan soil swelling. Transp. Res. Rec. 1526, 14–19 (1996)

    Article  Google Scholar 

  44. Agrawal, G., Weeraratne, S., Khilnani, K.: Estimating clay liner and cover permeability using computational neural networks. In: Proceedings of the 1st Congress on Computing in Civil Engineering, Washington (1994)

    Google Scholar 

  45. Goh, A.T.C.: Modeling soil correlations using neural networks. J. Comput. Civil Eng. ASCE 9(4), 275–278 (1995)

    Article  Google Scholar 

  46. Gribb, M.M., Gribb, G.W.: Use of neural networks for hydraulic conductivity determination in unsaturated soil. In: Proceedings of the 2nd International Conference on Ground Water Ecology, Bethesda, pp. 155–163 (1994)

    Google Scholar 

  47. Najjar, Y.M., Basheer, I.A., Naouss, W.A.: On the identification of compaction characteristics by neuronets. Comput. Geotech. 18(3), 167–187 (1996)

    Article  Google Scholar 

  48. Goh, A.T.C., Wong, K.S., Broms, B.B.: Estimation of lateral wall movements in braced excavation using neural networks. Can. Geotech. J. 32, 1059–1064 (1995)

    Article  Google Scholar 

  49. Kung, G.T., Hsiao, E.C., Schuster, M., Juang, C.H.: A neural network approach to estimating deflection of diaphram walls caused by excavation in clays. Comput. Geotech. 34(5), 385–396 (2007)

    Article  Google Scholar 

  50. Lu, Y.: Underground blast induced ground shock and its modeling using artificial neural network. Comput. Geotech. 32(3), 164–178 (2005)

    Article  Google Scholar 

  51. Rankine, R., Sivakugan, N.: Prediction of paste backfill performance using artificial neural networks. In: Proceedings of the 16th International Society for Soil Mechanics and Foundation Engineering Osaka, Japan, pp. 1107–1110 (2005)

    Google Scholar 

  52. Singh, T.N., Singh, V.: An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng. 23(3), 249–262 (2005)

    Article  Google Scholar 

  53. Shang, J.Q., Ding, W., Rowe, R.K., Josic, L.: Detecting heavy metal contamination in soil using complex permittivity and artificial neural networks. Can. Geotech. J. 41(6), 1054–1067 (2004)

    Article  Google Scholar 

  54. Gokceoglu, C., Yesilnacar, E., Sonmez, H., Kayabasi, A.: A neuro-fuzzy model for modulus of deformation of jointed rock masses. Comput. Geotech. 31(5), 375–383 (2004)

    Article  Google Scholar 

  55. Basheer, I.A., Reddi, L.N., Najjar, Y.M.: Site characterization byneuronets: an application to the landfill sitting problem. Ground Water 34, 610–617 (1996)

    Article  Google Scholar 

  56. Najjar, Y.M., Basheer, I.A.: Neural network approach for site characterization and uncertainty prediction. ASCE Geotech. Spec. Publ. 58(1), 134–148 (1996)

    Google Scholar 

  57. Rizzo, D.M., Dougherty, D.E.: Application of artificial neural networks for site characterization using hard and soft information. In: Proceedings of the 10th International Conference on Computational Methods in Water Resources, pp. 793–799. Kluwer Academic, Dordrecht (1994)

    Chapter  Google Scholar 

  58. Rizzo, D.M., Lillys, T.P., Dougherty, D.E.: Comparisons of site characterization methods using mixed data. ASCE Geotech. Spec. Publ. 58(1), 157–179 (1996)

    Google Scholar 

  59. Zhou, Y., Wu, X.: Use of neural networks in the analysis and interpretation of site investigation data. Comput. Geotech. 16, 105–122 (1994)

    Article  Google Scholar 

  60. Benardos, A.G., Kaliampakos, D.C.: Modeling TBM performance with artificial neural networks. Tunn. Undergr. Space Technol. 19(6), 597–605 (2004)

    Article  Google Scholar 

  61. Lee, C., Sterling, R.: Identifying probable failure modes for underground openings using a neural network. Int. J. Rock Mech. Min. Sci. Geomech. Abs. 29(1), 49–67 (1992)

    Article  Google Scholar 

  62. Moon, H.K., Na, S.M., Lee, C.W.: Artificial neural-network integrated with expert-system for preliminary design of tunnels and slopes. In: Proceedings of the 8th International Congress on Rock Mechanics, pp. 901–905. Balkema, Rotterdam (1995)

    Google Scholar 

  63. Neaupane, K., Achet, S.: Some applications of a back-propagation neural network in geo-engineering. Environ. Geol. 45(4), 567–575 (2004)

    Article  Google Scholar 

  64. Shi, J., Ortigao, J.A.R., Bai, J.: Modular neural networks for predicting settlement during tunneling. J. Geotech. Geoenviron. Eng. ASCE 124(5), 389–395 (1998)

    Article  Google Scholar 

  65. Shi, J.J.: Reducing prediction error by transforming input data for neural networks. J. Comput. Civil Eng. ASCE 14(2), 109–116 (2000)

    Article  Google Scholar 

  66. Yoo, C., Kim, J.: Tunneling performance prediction using an integrated GIS and neural network. Comput. Geotech. 34(1), 19–30 (2007)

    Article  MathSciNet  Google Scholar 

  67. Ferentinou, M.D., Sakellariou, M.G.: Computational intelligence tools for the prediction of slope performance. Comput. Geotech. 34(5), 362–384 (2007)

    Article  Google Scholar 

  68. Goh, A.T.C., Kulhawy, F.H.: Neural network approach to model the limit state surface for reliability analysis. Can. Geotech. J. 40(6), 1235–1244 (2003)

    Article  Google Scholar 

  69. Mayoraz, F., Vulliet, L.: Neural networks for slope movement prediction. Int. J. Geomech. 2(2), 153–173 (2002)

    Article  Google Scholar 

  70. Ni, S.H., Lu, P.C., Juang, C.H.: A fuzzy neural network approach to evaluation of slope failure potential. J. Microcomput. Civil Eng. 11, 59–66 (1996)

    Article  Google Scholar 

  71. Zhao, H.: Slope reliability analysis using a support vector machine. Comput. Geotech. 35(3), 459–467 (2008)

    Article  Google Scholar 

  72. Samui, P.: Seismic liquefaction potential assessment by using relevance vector machine. Earthq. Eng. Eng. Vib. 6(4), 331–336 (2007)

    Article  Google Scholar 

  73. Samui, P., Sitharam, T.G.: Machine learning modelling for predicting soil liquefaction susceptibility. Nat. Hazards Earth Syst. Sci. 11(1), 1–9 (2011)

    Article  Google Scholar 

  74. Samui, P., Hariharan, R.: Modeling of SPT seismic liquefaction data using minimax probability machine. Geotech. Geol. Eng. 32(3), 699–703 (2014)

    Article  Google Scholar 

  75. Samui, P., Jagan, J., Hariharan, R.: An alternative method for determination of liquefaction susceptibility of soil. Geotech. Geol. Eng. 34(2), 735–738 (2016)

    Article  Google Scholar 

  76. Samui, P., Kim, D., Hariharan, R.: Determination of seismic liquefaction potential of soil based on strain energy concept. Environ. Earth Sci. 74(7), 5581–5585 (2015)

    Article  Google Scholar 

  77. Xue, X., Yang, X.: Seismic liquefaction potential assessed by support vector machines approaches. Bull. Eng. Geol. Env. 75(1), 153–162 (2016)

    Article  Google Scholar 

  78. Samui, P.: Geotechnical site characterization and liquefaction evaluation using intelligent models. Department of Civil Engineering, Ph.D. thesis, IISC, India (2008)

    Google Scholar 

  79. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  80. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  81. Lanckriet, G.R.G., El Ghaoui, L., Bhattacharyya, C., Jordan, M.I.: Minimax probability machine. In: Advances in Neural Information Processing Systems. MIT Press (2002)

    Google Scholar 

  82. Suykens, J.A.K., De, B.J., Lukas, L., Vandewalle, J.: Weighted least squares support vector machines: robustness and sparse approximation. Neurocomputing 48(1–4), 85–105 (2002)

    Article  MATH  Google Scholar 

  83. Goh, A.T.C.: Seismic liquefaction potential assessed by neural networks. J. Geotech. Eng. 120(9), 1467–1480 (1994)

    Article  Google Scholar 

  84. Goh, A.T.C.: Neural-network modeling of CPT seismic liquefaction data. J. Geotech. Eng. 122(1), 70–73 (1996)

    Article  Google Scholar 

  85. Goh, A.T.C.: Probabilistic neural network for evaluating seismic liquefaction potential. Can. Geotech. J. 39, 219–232 (2002)

    Article  Google Scholar 

  86. Juang, C.H., Chen, C.J., Tang, W.H., Rosowsky, D.V.: CPT-based liquefaction analysis. Part 1. Determination of limit state function. Géotechnique 50(5), 583–592 (2000)

    Article  Google Scholar 

  87. Kurup, P.U., Dudani, N.K.: CPT evaluation of liquefaction potential using neural networks. In: Proceedings of the Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, CD ID: 4.36 (2000)

    Google Scholar 

  88. Kurup, P.U., Garg, A.: Evaluation of liquefaction potential using ART based neural networks. In: 84th Transportation Research Board Annual Meeting Transportation Research Record, Washington D.C. (2000)

    Google Scholar 

  89. Samui, P.: Slope stability analysis: a support vector machine approach. Environ. Geol. 56(2), 255–267 (2008)

    Article  Google Scholar 

  90. Lee, T.L., Lin, H.M., Lu, Y.P.: Assessment of highway slope failure using neural networks. J. Zhejiang Univ. Sci. A 10(1), 101–108 (2008)

    Article  MATH  Google Scholar 

  91. Samui, P., Kothari, D.P.: Utilization of a least square support vector machine (LSSVM) for slope stability analysis. ScientiaIranica 18(1), 53–58 (2011)

    MATH  Google Scholar 

  92. Kaveh, A., Hamze-Ziabari, S.M., Bakhshpoori, T.: Soft computing-based slope stability assessment: a comparative study. Geomech. Eng. 14(3), 257–269 (2018)

    Google Scholar 

  93. Muduli, P.K., Das, S.K., Samui, P., Sahoo, R.: Prediction of uplift capacity of suction caisson in clay using extreme learning machine. Ocean Syst. Eng. 5(1), 41–54 (2015)

    Article  Google Scholar 

  94. Muduli, P.K., Das, S.K.: First-order reliability method for probabilistic evaluation of liquefaction potential of soil using genetic programming. Int. J. Geomech. 15(3) (2013)

    Article  Google Scholar 

  95. Rahman, M.S., Wang, J., Deng, W., Carter, J.P.: A neural network model for the uplift capacity of suction caissons. Comput. Geotech. 28, 269–287 (2001)

    Article  Google Scholar 

  96. Samui, P., Kumar, R., Yadav, U., Kumari, S., Bui, D.T.: Reliability analysis of slope safety factor by using GPR and GP. Geotech. Geol. Eng. 37, 2245–2254 (2018)

    Article  Google Scholar 

  97. Samui, P., Kim, D., Jagan, J., Roy, S.S.: Determination of uplift capacity of suction caisson using Gaussian process regression, minimax probability machine regression and extreme learning machine. Iran. J. Sci. Technol. Trans. Civil Eng. 43, 651–657 (2018)

    Article  Google Scholar 

  98. Bhattacharya, S., Murakonda, P., Kumar Das, S.: Prediction of uplift capacity of Suction caisson in clay using Functional Network and Multivariate Adaptive Regression Spline. ScientiaIranica 25(2A), 517–531 (2018)

    Google Scholar 

  99. Shahr-Babak, M.M., Khanjani, M.J., Qaderi, K.: Uplift capacity prediction of suction caisson in clay using a hybrid intelligence method (GMDH-HS). Appl. Ocean Res. 59, 408–416 (2016)

    Article  Google Scholar 

  100. Samui, P., Das, S., Kim, D.: Uplift capacity of suction caisson in clay using multivariate adaptive regression splines. Ocean Eng. 38(17–18), 2123–2127 (2011)

    Article  Google Scholar 

  101. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine a new learning scheme of feed forward neural networks. In: Proceedings of the International Joint Conference on Neural Networks (IJCNN2004), Budapest, Hungary (2004)

    Google Scholar 

  102. Koza, J.R.: A paradigm for genetically breeding populations of computer programs to solve problems. Computer Science Department, Stanford University, Margaret Jacks Hall, Stanford, Calif (1990)

    Google Scholar 

  103. Friedman, J.H.: Multivariate adaptive regression splines. Annu. Stat. 19, 1–141 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  104. Ivakhnenko, A.G.: Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. SMC-1(4), 364–378 (1971)

    Article  MathSciNet  Google Scholar 

  105. Castillo, E.: Functional networks. Neural Process. Lett. 7, 151–159 (1998)

    Article  MathSciNet  Google Scholar 

  106. Kordjazi, A., Pooya Nejad, F., Jaksa, M.B.: Prediction of load-carrying capacity of piles using a support vector machine and improved data collection. In: Ramsay, G. (eds.) Proceedings of the 12th Australia New Zealand Conference on Geomechanics: The Changing Face of the Earth – Geomechanics & Human Influence, pp. 1–8 (2015)

    Google Scholar 

  107. Samui, P., Bhattacharya, G., Choudhury, D.: Prediction of ultimate capacity of laterally loaded piles in clay: a relevance vector machine approach. In: Avineri, E., et al. (eds.) Advances in Soft Computing, (ISSN 1615–3871) also in ‘Applications of Soft Computing’ (ISBN: 978-3-540-88078-3), vol. 52, no. 1, pp. 127–136. Springer, Berlin (2009)

    Google Scholar 

  108. Samui, P., Kim, D.: Least square support vector machine and multivariate adaptive regression spline for modeling lateral load capacity of piles. Neural Comput. Appl. 23, 1–5 (2013)

    Article  Google Scholar 

  109. Das, S.K., Suman, S.: Prediction of lateral load capacity of pile in clay using multivariate adaptive regression spline and functional network. Arab. J. Sci. Eng. 40(6), 1565–1578 (2015)

    Article  Google Scholar 

  110. Samui, P.: Determination of ultimate capacity of driven piles in cohesionless soil: a Multivariate Adaptive Regression Spline approach. Int. J. Numer. Anal. Methods Geomech. 36, 1434–1439 (2012)

    Article  Google Scholar 

  111. Shahin, M.A., Jaksa, M.B.: Pullout capacity of small ground anchors by direct CPT methods and neural networks. Can. Geotech. J. 43(6), 626–637 (2006)

    Article  Google Scholar 

  112. Samui, P.: Application of relevance vector machine for prediction of ultimate capacity of driven piles in cohesionless soils. Geotech. Geol. Eng. 30, 1261–1270 (2012)

    Article  Google Scholar 

  113. Mohanty, R., Suman, S., Das, S.K.: Modelling the pull-out capacity of ground anchors using multi-objective feature selection. Arab. J. Sci. Eng. 42(3), 1231–1241 (2017)

    Article  Google Scholar 

  114. Samui, P., Sitharam, T.G.: Pullout capacity of small ground anchors: a relevance vector machine approach. Geomech. Eng. 1(3), 259–262 (2009)

    Article  Google Scholar 

  115. Shahin, M.A.: Use of evolutionary computing for modelling some complex problems in geotechnical engineering. Geomech. Geoeng. 10(2), 109–125 (2015)

    Article  Google Scholar 

  116. Kaloop, M.R., Hu, J.W., Elbeltagi, E.: Predicting the pullout capacity of small ground anchors using nonlinear integrated computing techniques. Shock and Vibration, Article ID 2601063, 10 p. (2017)

    Google Scholar 

  117. Kumar, M., Samui, P.: Analysis of epimetamorphic rock slopes using soft computing. J. Shanghai Jiaotong Univ. (Sci.) 19(3), 274–278 (2014)

    Article  Google Scholar 

  118. Samui, P.: Multivariate adaptive regression spline (Mars) for prediction of elastic modulus of jointed rock mass. Geotech. Geol. Eng. 31(1), 249–253 (2013)

    Article  Google Scholar 

  119. Jagan, J., Samui, P., Roy, S.S., Kurup, P.: Intelligent models applied to elastic modulus of jointed rock mass. In: Handbook of Research on Trends and Digital Advances in Engineering Geology, pp. 1–30, 12 July 2017

    Google Scholar 

  120. Kumar, M., Bhatt, M., Samui, P.: Modeling of elastic modulus of jointed rock mass: Gaussian process regression approach. Int. J. Geomech. 14(3) (2014)

    Article  Google Scholar 

  121. Ceryan, N., Okkan, U., Samui, P., et al.: Modeling of tensile strength of rocks materials based on support vector machines approaches. Int. J. Numer. Anal. Meth. Geomech. 37(16), 2655–2670 (2013)

    Google Scholar 

  122. Kumar, M., Samui, P., Naithani, A.K.: Determination of stability of epimetamorphic rock slope using Minimax Probability Machine Geomatics. Nat. Hazards Risk 7(1), 186–193 (2016)

    Article  Google Scholar 

  123. Samui, P.: Predicted ultimate capacity of laterally loaded piles in clay using support vector machine. Geomech. Geoeng. 3(2), 113–120 (2008)

    Article  Google Scholar 

  124. Samui, P., Sitharam, T.G.: Least-square support vector machine applied to settlement of shallow foundations on cohesionless soils. Int. J. Numer. Anal. Meth. Geomech. 32(17), 2033–2043 (2008)

    Article  MATH  Google Scholar 

  125. Shahnazari, H., Shahin, M.A., Tutunchian, M.A.: Evolutionary-based approaches for settlement prediction of shallow foundations on cohesionless soils. Int. J. Civil Eng. 12(1), 55–64 (2014)

    Google Scholar 

  126. Samui, P., Kurup, P.: Use of the relevance vector machine for prediction of an over consolidation ratio. Int. J. Geomech. 13(1), 26–32 (2013)

    Article  Google Scholar 

  127. Padmini, D., Ilamparuthi, K., Sudheer, K.P.: Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 35, 33–46 (2008)

    Article  Google Scholar 

  128. Samui, P.: Application of statistical learning algorithms to ultimate bearing capacity of shallow foundation on cohesionless soil. Int. J. Numer. Anal. Meth. Geomech. 36(1), 100–110 (2012)

    Article  Google Scholar 

  129. Park, H., Lee, S.R.: Evaluation of the compression index of soils using an artificial neural network. Comput. Geotech. 38, 472–481 (2011)

    Article  Google Scholar 

  130. Samui, P., Kim, D.: Minimax probability machine regression and extreme learning machine applied to compression index of marine clay. IJMS 46(11), 2350–2356 (2017)

    Google Scholar 

  131. Ahangar-Asr, A., Faramarzi, A., Mottaghifard, N., Javadi, A.A.: Modelling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Comput. Geosci. 37(11), 1860–1869 (2011)

    Article  Google Scholar 

  132. Yilmaz, I., Marschalko, M., Bednarik, M., Kaynar, O., Fojtova, L.: Neural computing models for prediction of permeability coefficient of coarse grained soils. Neural Comput. Appl. (2011). https://doi.org/10.1007/s00521-011-0535-4

    Article  Google Scholar 

  133. Kayadelen, C.: Estimation of effective stress parameter of unsaturated soils by using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 32, 1087–1106 (2008)

    Article  MATH  Google Scholar 

  134. Samui, P., Jagan, J.: Determination of effective stress parameter of unsaturated soils: a Gaussian process regression approach. Front. Struct. Civil Eng. 7(2), 133–136 (2013)

    Article  Google Scholar 

  135. Samui, P., Kurup, P.: Use of relevance vector machine for prediction of over consolidation ratio. Int. J. Geomech. 13(1), 26–32 (2011)

    Article  Google Scholar 

  136. Samui, P., Kurup, P.: Multivariate adaptive regression spline (MARS) and least squares support vector machine (LSSVM) for OCR prediction. Soft. Comput. 16(8), 1347–1351 (2012)

    Article  Google Scholar 

  137. Samui, P., Sitharam, T.G.: Site characterization model using least-square support vector machine and relevance vector machine based on corrected SPT data (Nc) Int. J. Numer. Anal. Methods Geomech. 34(7), 755–770 (2010)

    MATH  Google Scholar 

  138. Chua, C.G., Goh, A.T.C.: Estimating wall deflections in deep excavations using Bayesian neural networks. Tunn. Undergr. Space Technol. 20(4), 400–409 (2005)

    Article  Google Scholar 

  139. Ghaleini, E.N., Koopialipoor, M., Momenzadeh, M., Sarafraz, M.E., Mohamad, E.T., Gordan, B.A.: Combination of artificial bee colony and neural network for approximating the safety factor of retaining walls. Eng. Comput. 35, 1–12 (2018)

    Google Scholar 

  140. Kumar, R., Samui, P., Kumari, S.: Reliability analysis of infinite slope using metamodels. Geotech. Geol. Eng. 35(3), 1221–1230 (2017)

    Article  Google Scholar 

  141. Chan, C.L., Low, B.K.: Probabilistic analysis of laterally loaded piles using response surface and neural network approaches. Comput. Geotech. 43, 101–110 (2012)

    Article  Google Scholar 

  142. Kang, F., Li, J.: Artificial bee colony algorithm optimized support vector regression for system reliability analysis of slopes. J. Comput. Civil Eng. 30(3) (2016)

    Article  Google Scholar 

  143. Kang, F., Li, J.S., Li, J.J.: System reliability analysis of slopes using least squares support vector machines with particle swarm optimization. Neurocomputing 209, 46–56 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pijush Samui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samui, P. (2020). Application of Artificial Intelligence in Geo-Engineering. In: Correia, A., Tinoco, J., Cortez, P., Lamas, L. (eds) Information Technology in Geo-Engineering. ICITG 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-32029-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32029-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32028-7

  • Online ISBN: 978-3-030-32029-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics