Skip to main content

Pharmacokinetics and Pharmacodynamics

  • 1585 Accesses

Abstract

Medicines achieve their goal by modulating homeostatic mechanisms in the body. The administration of prescribed medication is a key responsibility of the registered nurse; nevertheless, to ensure patient safety, the process while necessarily formulaic does not directly address the principles of pharmacology. A thorough consideration of these principles assists the nurse to understand how a drug arrives at its site of action (pharmacokinetics) and, once there, how drugs provoke action and effect (pharmacodynamics).

Keywords

  • Pharmacokinetics
  • Pharmacodynamics
  • Absorption
  • Distribution
  • Metabolism
  • Excretion

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-32004-1_2
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   44.99
Price excludes VAT (USA)
  • ISBN: 978-3-030-32004-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   59.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18

References

  • Abernethy DR, Greenblatt DJ, Eshelman FN, Shader RI (1984) Ranitidine does not impair oxidative or conjugative metabolism: noninteraction with antipyrine, diazepam, and lorazepam. Clin Pharmacol Ther 35(2):188–192

    CAS  PubMed  CrossRef  Google Scholar 

  • Alakhali KM, Vigneshwaran E, Shaik MAA (2018) Effect of food and antacid on simvastatin bioavailability on healthy adult volunteers. J Health Res Rev Dev Ctries 5(1):26–32

    CrossRef  Google Scholar 

  • Allen JP, Ludden TM, Burrow SR, Clementi WA, Stavchansky SA (1979) Phenytoin cumulation kinetics. Clin Pharmacol Ther 26(4):445–448

    CAS  PubMed  CrossRef  Google Scholar 

  • Andreasen F, Hansen U, Husted SE, Jansen JA (1983) The pharmacokinetics of frusemide are influenced by age. Br J Clin Pharmacol 16(4):391–397

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Anzenbacher P, Anzenbacherova E (2001) Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58(5–6):737–747

    CAS  PubMed  CrossRef  Google Scholar 

  • Cerqueira PM, Cesarino EJ, Mateus FH, Mere Y Jr, Santos SR, Lanchote VL (1999) Enantioselectivity in the steady-state pharmacokinetics of metoprolol in hypertensive patients. Chirality 11(7):591–597

    CAS  PubMed  CrossRef  Google Scholar 

  • Clissold SP, Campoli-Richards DM (1986) Omeprazole. Drugs 32(1):15–47

    CAS  PubMed  CrossRef  Google Scholar 

  • Colucci P, Seng Yue C, Ducharme M, Benvenga S (2013) A review of the pharmacokinetics of levothyroxine for the treatment of hypothyroidism. Eur J Endocrinol 9(1):40–47

    CrossRef  Google Scholar 

  • Day YS, Myszka DG (2003) Characterizing a drug’s primary binding site on albumin. J Pharm Sci 92(2):333–343

    CAS  PubMed  CrossRef  Google Scholar 

  • Delanaye P, Schaeffner E, Ebert N, Cavalier E, Mariat C, Krzesinski JM, Moranne O (2012) Normal reference values for glomerular filtration rate: what do we really know? Nephrol Dial Transplant 27(7):2664–2672

    PubMed  CrossRef  Google Scholar 

  • Forrest JA, Clements JA, Prescott LF (1982) Clinical pharmacokinetics of paracetamol. Clin Pharmacokinet 7(2):93–107

    CAS  PubMed  CrossRef  Google Scholar 

  • Fournier T, Medjoubi-N N, Porquet D (2000) Alpha-1-acid glycoprotein. Biochimica Biophys Acta 1482(1–2):157–171

    CAS  CrossRef  Google Scholar 

  • Guengerich FP (2008) Cytochrome P450 and chemical toxicology. Chem Res Toxicol 21(1):70–83

    CAS  PubMed  CrossRef  Google Scholar 

  • Janssen P, Vanden Berghe P, Verschueren S, Lehmann A, Depoortere I, Tack J (2011) The role of gastric motility in the control of food intake. Aliment Pharmacol Ther 33(8):880–894

    CAS  PubMed  CrossRef  Google Scholar 

  • Johnson M, Markham-Abedi C, Susce MT, Murray-Carmichael E, McCollum S, de Leon J (2006) A poor metabolizer for cytochromes P450 2D6 and 2C19: a case report on antidepressant treatment. CNS Spectr 11(10):757–760

    PubMed  CrossRef  Google Scholar 

  • Khan EU (2002) The role of P-glycoprotein at the blood-brain barrier. PhD thesis. King’s College London (unpublished)

    Google Scholar 

  • Khan EU (2006) The blood brain barrier: its implications in neurological disease and treatment. Br J Neurosci Nurs 2(1):18–25

    CrossRef  Google Scholar 

  • Khan EU (2010) Medicine management: pharmacokinetic update for community nurses. Br J Commun Nurs 15(9):436–444

    CrossRef  Google Scholar 

  • Klaassen CD, Aleksunes LM (2010) Xenobiotic, bile acid, and cholesterol transporters: function and regulation. Pharmacol Rev 62(1):1–96

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Latini R, Tognoni G, Kates RE (1984) Clinical pharmacokinetics of amiodarone (weak base). Clin Pharmacokinet 9(2):136–156

    CAS  PubMed  CrossRef  Google Scholar 

  • Li ZH, Deng Y, Cai HL, Guo ZH, Hou ZY, Wu G, Yan M, Zhang BK (2016) Pharmacokinetic properties and bioequivalence of spironolactone tablets in fasting and fed healthy Chinese male subjects. Int J Clin Pharmacol Ther 54(6):455–461

    CAS  PubMed  CrossRef  Google Scholar 

  • Lötsch J (2005) Opioid metabolites. J Pain Symptom Manage 29(5 Suppl):S10–S24

    PubMed  CrossRef  Google Scholar 

  • Lown KS, Bailey DG, Fontana RJ, Janardan SK, Adair CH, Fortlage LA, Brown MB, Guo W, Watkins PB (1997) Grapefruit juice increases felodipine oral availability in humans by decreasing intestinal CYP3A protein expression. J Clin Investig 99(10):2545–2553

    CAS  PubMed  CrossRef  Google Scholar 

  • Mudie DM, Amidon GL, Amidon GE (2010) Physiological parameters for oral delivery and in vitro testing. Mol Pharmacol 7(5):1388–1405

    CAS  CrossRef  Google Scholar 

  • Polasek TM, Lin FP, Miners JO, Doogue MP (2011) Perpetrators of pharmacokinetic drug-drug interactions arising from altered cytochrome P450 activity: a criteria-based assessment. Br J Clin Pharmacol 71(5):727–736

    CAS  PubMed  PubMed Central  CrossRef  Google Scholar 

  • Shimada T, H Mimura YM, Inui Y, Guengerich FP (1994) Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J Pharmacol Exp Ther 270(1):414–423

    CAS  Google Scholar 

  • Shitara Y, Sato H, Sugiyama Y (2005) Evaluation of drug-drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 45:689–723

    CAS  PubMed  CrossRef  Google Scholar 

  • Stanski DR, Greenblatt DJ, Lowenstein E (1978) Kinetics of intravenous and intramuscular morphine. Clin Pharmacol Ther 24(1):52–59

    CAS  PubMed  CrossRef  Google Scholar 

  • Steiner LA, Staender S, Sieber CC, Skarvan K (2007) Effects of simulated hypovolaemia on haemodynamics, left ventricular function, mesenteric blood flow and gastric Pco2. Acta Anaesthesiol Scand 51(2):143–150

    PubMed  CrossRef  Google Scholar 

  • Williams JA, Hyland R, Jones BC, Smith DA, Hurst S, Goosen TC, Peterkin V, Koup JR, Ball SE (2004) Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32(11):1201–1208

    CAS  PubMed  CrossRef  Google Scholar 

  • Zhou S-F (2009) Polymorphism of human cytochrome P450 2D6 and its clinical significance: part I. Clin Pharmacokinet 48(11):689–723

    CAS  PubMed  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Khan .

Editor information

Editors and Affiliations

Appendices

Multiple Choice Questions

  1. 1.

    A risk associated with polypharmacy is:

    1. (a)

      Obesity

    2. (b)

      Drug–drug interaction

    3. (c)

      Anorexia

    4. (d)

      Urinary retention

  2. 2.

    A non-competitive antagonist:

    1. (a)

      Acts on a receptor but without the maximum effect.

    2. (b)

      Binds to a site other than the ligand binding site on a target receptor.

    3. (c)

      Does not cause any effect on a target receptor.

    4. (d)

      Action depends on the time of day the drug is administered.

  3. 3.

    The therapeutic index is:

    1. (a)

      The ratio between the lethal dose of a drug and the minimum effective dose of a drug

    2. (b)

      The ratio between a drug’s efficacy and its bioavailability

    3. (c)

      The ratio between the average minimum effective dose of a drug and the average maximum non-toxic dose of a drug

    4. (d)

      The ratio between a drug’s half-life and the maximum non-toxic dose

  4. 4.

    Pharmacokinetic processes include:

    1. (a)

      Inactivation of the drug

    2. (b)

      The action and effect of a drug

    3. (c)

      The sites and mechanisms of drug action

    4. (d)

      Drug potency

  5. 5.

    An agonist is a ligand that has:

    1. (a)

      An inhibitory effect on a target receptor

    2. (b)

      No effect on a target receptor

    3. (c)

      A high affinity for a target receptor with high intrinsic activity

    4. (d)

      A high affinity for a target receptor with no intrinsic activity

  6. 6.

    Common drug cytochrome P450 inhibitors include:

    1. (a)

      Verapamil

    2. (b)

      Dexamethasone

    3. (c)

      Tramadol

    4. (d)

      Methadone

  7. 7.

    The half-life of a drug can be defined as:

    1. (a)

      The time taken for the plasma concentration to increase by half

    2. (b)

      Time taken for the plasma concentration of a drug to decrease by half

    3. (c)

      The time taken for the drug to be absorbed

    4. (d)

      Time taken for the drug to be metabolised

  8. 8.

    A lipid-soluble drug is:

    1. (a)

      Water-soluble

    2. (b)

      Carries a negative charge

    3. (c)

      Carriers a positive charge

    4. (d)

      Unionised

  9. 9.

    Which factors affect oral drug absorption:

    1. (a)

      Body temperature

    2. (b)

      Tachycardia

    3. (c)

      Drug solubility

    4. (d)

      History of diabetes

  10. 10.

    An antagonist drug:

    1. (a)

      Binds to the receptor and mimics the receptor’s normal response

    2. (b)

      Has no affinity for the binding site

    3. (c)

      Binds to the receptor and blocks access by an agonist

    4. (d)

      Has no affect

Answers

  1. 1.

    b

  2. 2.

    b

  3. 3.

    c

  4. 4.

    a

  5. 5.

    c

  6. 6.

    a

  7. 7.

    b

  8. 8.

    d

  9. 9.

    c

  10. 10.

    c

Rights and permissions

Reprints and Permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Khan, E. (2020). Pharmacokinetics and Pharmacodynamics. In: Hood, P., Khan, E. (eds) Understanding Pharmacology in Nursing Practice . Springer, Cham. https://doi.org/10.1007/978-3-030-32004-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32004-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32003-4

  • Online ISBN: 978-3-030-32004-1

  • eBook Packages: MedicineMedicine (R0)