Skip to main content

Numerical Modelling of Formation of Chuya-Kuray Fault Zone, Gorni Altai

  • Conference paper
  • First Online:
  • 353 Accesses

Abstract

Numerical modeling of fault zone evolution can elucidate the process of formation of a complicated fault system. Here we develop a numerical model of stress-strain state evolution in and around the Chuya-Kuray fault zone of Gorni Altay, Russia, to understand the fault zone evolution. The model’s structure is constructed on the basis of seismotectonic and paleoseismological studies as well as high-resolution Space-Radar-Topography-Mission data. A mathematical model is described by a set of partial differential equations of solid mechanics. Constitutive equations for inelastic strains were derived earlier and are implemented in this work. Inelastic behavior is described by the modified Drucker-Prager plasticity model with non-associated plastic flow rule. An initial stress state of the model is a result of gravity forces, and the model is activated by a slip of a buried dextral strike-slip fault located in the basement of the model. The results of modelling illustrate the stages of fault development, the development of fault brunches and the structure of the modeled fault zone.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Davis, G.H., et al.: Conjugate Riedel deformation band shear zones. J. Struct. Geol. 22, 169–190 (2000)

    Article  ADS  Google Scholar 

  2. Rebetsky, Y.L., Mikhailova, A.V.: Deep heterogeneity of the stress state in the horizontal shear zones. Izvestiya Phys. Solid Earth 50(6), 824–838 (2014). https://doi.org/10.1134/S1069351314060068

    Article  ADS  Google Scholar 

  3. Sengor, A.M.C., et al.: The geometry of the North Anatolian transform fault in the Sea of Marmara and its temporal evolution: implications for the development of intracontinental transform faults. Can. J. Earth Sci. 51, 222–242 (2014). https://doi.org/10.1139/cjes-2013-0160

    Article  ADS  Google Scholar 

  4. Ghosh, N., Chattopadhyay, A.: The initiation and linkage of surface fractures above a buried strike-slip fault: an experimental approach. J. Earth Syst. Sci. 117, 23–32 (2008). https://doi.org/10.1007/s12040-008-0009-y

    Article  ADS  Google Scholar 

  5. Mawer, C.K.: Kinematic indicators in shear zones. In: Bartholomew, M.J., Hyndman, D.W., Mogk, D.W., Mason, R. (eds.) Proceedings of the International Conferences on Basement Tectonics 8. Springer, Dordrecht (1992)

    Google Scholar 

  6. Taniyama, H.: Numerical analysis of overburden soil subjected to strike-slip fault: distinct element analysis of Nojima fault. Eng. Geol. 123(3), 194–203 (2011). https://doi.org/10.1016/j.enggeo.2011.08.003

    Article  Google Scholar 

  7. Stefanov, Y.P., et al.: Structure and formation stages of a fault zone in a geomedium layer in strike-slip displacement of the basement. Phys. Mesomech. 17, 204–215 (2014). https://doi.org/10.1134/S1029959914030059

    Article  Google Scholar 

  8. Stefanov, Y.P., Bakeev, R.A.: Deformation and fracture structures in strike-slip faulting. Eng. Fract. Mech. 129, 102–111 (2014). https://doi.org/10.1016/j.engfracmech.2014.05.019

    Article  Google Scholar 

  9. Chemenda, A.I., et al.: Numerical model of formation of a 3-D strike-slip fault system. Comptes Rendus Geosci. 348(1), 61–69 (2016). https://doi.org/10.1016/j.crte.2015.09.008

    Article  ADS  Google Scholar 

  10. Novikov, I.S., et al.: The system of neotectonic faults in southeastern Altai: orientations and geometry of motion. Rus. Geol. Geop. 49(11), 859–867 (2008). https://doi.org/10.1016/j.rgg.2008.04.005

    Article  Google Scholar 

  11. Rogozhin, E.A., et al.: Tectonic setting and geological manifestations of the 2003 Altai earthquake. Geotectonics 41(2), 87–104 (2007). https://doi.org/10.1134/S001685210702001X

    Article  ADS  MathSciNet  Google Scholar 

  12. Lunina, O.V., et al.: Seismotectonic deformations and stress fields in the fault zone of the 2003 Chuya earthquake, Ms = 7.5, Gorni Altai. Geotectonics 40(3), 208–224 (2006). https://doi.org/10.1134/s0016852106030058

    Article  ADS  Google Scholar 

  13. Lunina, O.V., et al.: Geometry of the fault zone of the 2003 Ms = 7.5 Chuya earthquake and associated stress fields, Gorni Altai. Tectonophysics 453(1–4), 276–294 (2008). https://doi.org/10.1016/j.tecto.2007.10.010

    Article  ADS  Google Scholar 

  14. Leskova, E.V., Emanov, A.A.: Some properties of the hierarchical model reproducing the stress state of the epicentral area of the 2003 Chuya earthquake. Izvestiya, Phys. Sol. Earth 50(3), 393–402 (2014). https://doi.org/10.1134/S1069351314030057

    Article  ADS  Google Scholar 

  15. Nissen, E., et al.: Combining InSAR and seismology to study the 2003 Siberian Altai earthquakes-dextral strike-slip and anticlockwise rotations in the northern India-Eurasia collision zone. Geoph. J. Int. 169(1), 216–232 (2007). https://doi.org/10.1111/j.1365-246X.2006.03286.x

    Article  ADS  Google Scholar 

  16. Wilkins, M.L.: Computer Simulation of Dynamic Phenomena. Springer, Berlin-Heidelberg-New York (1999)

    Book  Google Scholar 

  17. Dobretsov, N.L., et al.: Cenozoic history of topography in southeastern Gorny Altai: thermochronology and resistivity and gravity records. Russ. Geol. Geophys. 57(11), 1525–1534 (2016). https://doi.org/10.1016/j.rgg.2016.10.001

    Article  ADS  Google Scholar 

  18. Vetrov, E.V., Buslov, M.M., De Grave, J.: Evolution of tectonic events and topography in southeastern Gorny Altai in the Late Mesozoic-Cenozoic (data from apatite fission track thermochronology). Russ. Geol. Geophys. 57(1), 95–110 (2016). https://doi.org/10.1016/j.rgg.2016.01.007

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Section 3 of current work was supported by the Program of fundamental research of state academies of sciences for 2013–2020. Other parts of this work were granted by the Russian Foundation for basic research, grant No. 18-35-00224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Eremin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eremin, M., Stefanov, Y. (2019). Numerical Modelling of Formation of Chuya-Kuray Fault Zone, Gorni Altai. In: Kocharyan, G., Lyakhov, A. (eds) Trigger Effects in Geosystems. Springer Proceedings in Earth and Environmental Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-31970-0_4

Download citation

Publish with us

Policies and ethics