Skip to main content

Investigation of Topological Boundary States via Generalized Bloch Theorem

  • Chapter
  • First Online:
Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter

Part of the book series: Springer Theses ((Springer Theses))

  • 541 Accesses

Abstract

We analyze several 1D and 2D topological lattice Hamiltonians using the generalization of Bloch’s theorem developed in Chap. 2. Apart from providing exact solutions for several important models, the analyses of various models in this chapter also serve as illustrations for using the framework of generalized Bloch theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Alternatively, we could have substituted the analytic expression for either of the roots z 1(𝜖) or z 2(𝜖) of Eq. (3.8) in Eq. (3.9), to obtain a single equation in 𝜖, whose roots coincide with the eigenvalues of H.

  2. 2.

    Explicitly, the Jordan–Wigner mapping yields the Hamiltonian \(\widehat {H}_{XY} = -\sum _{j=1}^{N}B_z(\sigma _z^j+1)- \sum _{j=1}^{N-1}\big (J_x\sigma _x^{j}\sigma _x^{j+1} +J_y\sigma _x^{j}\sigma _x^{j+1}\big ),\) where \(\sigma _x^j,\sigma _y^j, \sigma _z^j \) are Pauli matrices for spin j, B z = μ∕2 is the strength of the magnetic field along the z-direction, and J x = t − Δ, J y = t +  Δ are coupling strengths along x and y, respectively.

  3. 3.

    If |𝜖〉 is an eigenstate of H with energy 𝜖, satisfying \(\mathcal {S}_1|\epsilon \rangle =|\epsilon \rangle \), then \(\mathcal {S}_2|\epsilon \rangle \) is also an eigenstate with the same energy. Further, \(\mathcal {S}_2|\epsilon \rangle \) is orthogonal to |𝜖〉, as the relation \(\{\mathcal {S}_1,\mathcal {S}_2\}=0\) leads to \(\mathcal {S}_1(\mathcal {S}_2|\epsilon \rangle ) = -(\mathcal {S}_2|\epsilon \rangle )\).

  4. 4.

    Observe that the states corresponding to j = 1, …, N − 2 are related to the basis states Ψj1,± and Ψj2,± as follows: \(\Psi _{j1,\pm } = \tilde {\Psi }_{j,\pm } \pm \tilde {\Psi }_{j+1,\pm }\) and \(\Psi _{j2,\pm } = -\tilde {\Psi }_{j,\pm } \pm \tilde {\Psi }_{j+1,\pm }\).

  5. 5.

    It is worth noting that eigenfunctions may also be obtained by means of Lie-algebraic methods that are in principle applicable beyond quadratic Hamiltonians, see Ref. [33].

  6. 6.

    There are two other solutions of the system in Eq. (3.38), \(z_{1,\pm }=-\frac {1}{2}\big (\xi \pm \sqrt {4+\xi ^2}\big )\). These solutions are excluded because the internal state |u 〉 vanishes identically if evaluated at z  = z 1,±, see Eq. (3.39). Similar remarks apply to the system in Eq. (3.40).

  7. 7.

    Reference [38] used the notation \(P_{B,k_{\|}}\) (\(\equiv Q_{k_{\|}}\)), which however would be confusing in the present content.

References

  1. S. Deng, L. Viola, G. Ortiz, Majorana modes in time-reversal invariant s-wave topological superconductors. Phys. Rev. Lett. 108, 036803 (2012). https://link.aps.org/doi/10.1103/PhysRevLett.108.036803

    Article  ADS  Google Scholar 

  2. S. Deng, G. Ortiz, L. Viola, Multiband s-wave topological superconductors: role of dimensionality and magnetic field response. Phys. Rev. B 87, 205414 (2013). https://link.aps.org/doi/10.1103/PhysRevB.87.205414

    Article  ADS  Google Scholar 

  3. C. Bena, Metamorphosis and taxonomy of Andreev bound states. Eur. Phys. J. B 85, 196 (2012). https://doi.org/10.1140/epjb/e2012-30133-0

    Article  ADS  Google Scholar 

  4. M. Kohmoto, Y. Hasegawa, Zero modes and edge states of the honeycomb lattice. Phys. Rev. B 76, 205402 (2007). https://link.aps.org/doi/10.1103/PhysRevB.76.205402

    Article  ADS  Google Scholar 

  5. N. Read, D. Green, Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum hall effect. Phys. Rev. B 61, 10267–10297 (2000). https://link.aps.org/doi/10.1103/PhysRevB.61.10267

    Article  ADS  Google Scholar 

  6. B.A. Bernevig, T.L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013)

    Book  Google Scholar 

  7. K. Kawabata, R. Kobayashi, N. Wu, H. Katsura, Exact zero modes in twisted Kitaev chains. Phys. Rev. B 95, 195140 (2017). https://link.aps.org/doi/10.1103/PhysRevB.95.195140

    Article  ADS  Google Scholar 

  8. D.-P. Liu, Topological phase boundary in a generalized Kitaev model. Chin. Phys. B 25, 057101 (2016). https://doi.org/10.1088/1674-1056/25/5/057101

    Article  Google Scholar 

  9. B.-Z. Zhou, B. Zhou, Topological phase transition in a ladder of the dimerized Kitaev super-conductor chains. Chin. Phys. B 25, 107401 (2016). https://doi.org/10.1088/1674-1056/25/10/107401

    Article  ADS  Google Scholar 

  10. Y. He, K. Wright, S. Kouachi, C.-C. Chien, Topology, edge states, and zero-energy states of ultracold atoms in one-dimensional optical superlattices with alternating on-site potentials or hopping coefficients. Phys. Rev. A 97, 023618 (2018). https://link.aps.org/doi/10.1103/PhysRevA.97.023618

    Article  ADS  Google Scholar 

  11. A.A. Aligia, L. Arrachea, Entangled end states with fractionalized spin projection in a time-reversal-invariant topological superconducting wire. Phys. Rev. B 98, 174507 (2018). https://link.aps.org/doi/10.1103/PhysRevB.98.174507

    Article  ADS  Google Scholar 

  12. E. Cobanera, A. Alase, G. Ortiz, L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: interfaces and topological surface band structure. Phys. Rev. B 98, 245423 (2018). https://link.aps.org/doi/10.1103/PhysRevB.98.245423

    Article  ADS  Google Scholar 

  13. A. Alase, E. Cobanera, G. Ortiz, L. Viola, Generalization of Bloch’s theorem for arbitrary boundary conditions: theory. Phys. Rev. B 96, 195133 (2017). https://link.aps.org/doi/10.1103/PhysRevB.96.195133

    Article  Google Scholar 

  14. K. Tsutsui, Y. Ohta, R. Eder, S. Maekawa, E. Dagotto, J. Riera, Heavy quasiparticles in the Anderson lattice model. Phys. Rev. Lett. 76, 279 (1996). https://link.aps.org/doi/10.1103/PhysRevLett.76.279

    Article  ADS  Google Scholar 

  15. A.J. Heeger, S. Kivelson, J. Schrieffer, W.-P. Su, Solitons in conducting polymers. Rev. Mod. Phys. 60, 781 (1988). https://link.aps.org/doi/10.1103/RevModPhys.60.781

    Article  ADS  Google Scholar 

  16. D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959 (2010). https://link.aps.org/doi/10.1103/RevModPhys.82.1959

    Article  ADS  MathSciNet  Google Scholar 

  17. E. Cobanera, G. Ortiz, Equivalence of topological insulators and superconductors. Phys. Rev. B 92, 155125 (2015). https://doi.org/10.1103/PhysRevB.92.155125

    Article  ADS  Google Scholar 

  18. E. Cobanera, G. Ortiz, Z. Nussinov, The bond-algebraic approach to dualities. Adv. Phys. 60, 679–798 (2011). https://doi.org/10.1080/00018732.2011.619814

    Article  ADS  Google Scholar 

  19. A.Y. Kitaev, Unpaired Majorana fermions in quantum wires. Phys.-Uspekhi 44, 131–136 (2001). https://doi.org/10.1070/1063-7869/44/10s/s29

    Article  ADS  Google Scholar 

  20. J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012). https://doi.org/10.1088/0034-4885/75/7/076501

    Article  ADS  Google Scholar 

  21. C. Beenakker, Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013). https://www.annualreviews.org/doi/full/10.1146/annurev-conmatphys-030212-184337

    Article  ADS  Google Scholar 

  22. H.J. Mikeska, W. Pesch, Boundary effects on static spin correlation functions in the isotropic x–y chain at zero temperature. Z. Phys. B Condens. Matter 26, 351–353 (1977). https://doi.org/10.1007/BF01570745

    ADS  Google Scholar 

  23. P. Pfeuty, The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79–90 (1970). https://doi.org/10.1016/0003-4916(70)90270-8

    Article  ADS  Google Scholar 

  24. S.S. Hegde, S. Vishveshwara, Majorana wave-function oscillations, fermion parity switches, and disorder in Kitaev chains. Phys. Rev. B 94, 115166 (2016). https://link.aps.org/doi/10.1103/PhysRevB.94.115166

    Article  ADS  Google Scholar 

  25. I.C. Fulga, A. Haim, A.R. Akhmerov, Y. Oreg, Adaptive tuning of Majorana fermions in a quantum dot chain. New J. Phys. 15, 045020 (2013). https://doi.org/10.1088/1367-2630/15/4/045020

    Article  ADS  Google Scholar 

  26. G.B. Lesovik, I.A. Sadovskyy, Scattering matrix approach to the description of quantum electron transport. Phys.-Uspekhi 54, 1007 (2011). https://doi.org/10.3367/UFNe.0181.201110b.1041

    Article  ADS  Google Scholar 

  27. G. Ortiz, J. Dukelsky, E. Cobanera, C. Esebbag, C. Beenakker, Many-body characterization of particle-conserving topological superfluids. Phys. Rev. Lett. 113, 267002 (2014). https://link.aps.org/doi/10.1103/PhysRevLett.113.267002

    Article  ADS  Google Scholar 

  28. K.Y. Arutyunov, D.S. Golubev, A.D. Zaikin, Superconductivity in one dimension. Phys. Rep. 464, 1–70 (2008). https://doi.org/10.1016/j.physrep.2008.04.009

    Article  ADS  Google Scholar 

  29. G. Ortiz, E. Cobanera, What is a particle-conserving topological superfluid? The fate of Majorana modes beyond mean-field theory. Ann. Phys. 372, 357–374 (2016). https://doi.org/10.1016/j.aop.2016.05.020

    MATH  Google Scholar 

  30. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109 (2009). https://link.aps.org/doi/10.1103/RevModPhys.81.109

    Article  ADS  Google Scholar 

  31. P. Delplace, D. Ullmo, G. Montambaux, Zak phase and the existence of edge states in graphene. Phys. Rev. B 84, 195452 (2011). https://link.aps.org/doi/10.1103/PhysRevB.84.195452

    Article  ADS  Google Scholar 

  32. S. Mao, Y. Kuramoto, K.-I. Imura, A. Yamakage, Analytic theory of edge modes in topological insulators. J. Phys. Soc. Jpn. 79, 124709 (2010). https://doi.org/10.1143/JPSJ.79.124709

    Article  ADS  Google Scholar 

  33. B. Dietz, F. Iachello, M. Macek, Algebraic theory of crystal vibrations: localization properties of wave functions in two-dimensional lattices. Crystals 7, 246 (2017). https://doi.org/10.3390/cryst7080246

    Article  Google Scholar 

  34. W. Yao, S.A. Yang, Q. Niu, Edge states in graphene: from gapped flat-band to gapless chiral modes. Phys. Rev. Lett. 102, 096801 (2009). https://doi.org/10.1103/PhysRevLett.102.096801

    Article  ADS  Google Scholar 

  35. F. Bechstedt, Principles of Surface Physics, 1st edn. (Springer, Berlin, 2012)

    Google Scholar 

  36. S.M. Rombouts, J. Dukelsky, G. Ortiz, Quantum phase diagram of the integrable px+ipy fermionic superfluid. Phys. Rev. B 82, 224510 (2010). https://doi.org/10.1103/PhysRevB.82.224510

    Article  ADS  Google Scholar 

  37. A.P. Mackenzie, Y. Maeno, The superconductivity of Sr2RuO4 and the physics of spin-triplet pairing. Rev. Mod. Phys. 75, 657 (2003). https://doi.org/10.1103/RevModPhys.75.657

    Article  ADS  Google Scholar 

  38. S. Deng, G. Ortiz, A. Poudel, L. Viola, Majorana flat bands in s-wave gapless topological superconductors. Phys. Rev. B 89, 140507 (2014). https://link.aps.org/doi/10.1103/PhysRevB.89.140507

    Article  ADS  Google Scholar 

  39. D.H. Lee, J.D. Joannopoulos, Simple scheme for surface-band calculations. I. Phys. Rev. B 23, 4988–4996 (1981). https://link.aps.org/doi/10.1103/PhysRevB.23.4988

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alase, A. (2019). Investigation of Topological Boundary States via Generalized Bloch Theorem. In: Boundary Physics and Bulk-Boundary Correspondence in Topological Phases of Matter. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-31960-1_3

Download citation

Publish with us

Policies and ethics